/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2014 Fredrik Johansson ******************************************************************************/ #include "acb_hypgeom.h" /* computes the factors that are independent of n (all are upper bounds) */ void acb_hypgeom_u_asymp_bound_factors(int * R, mag_t alpha, mag_t nu, mag_t sigma, mag_t rho, mag_t zinv, const acb_t a, const acb_t b, const acb_t z) { mag_t r, u, zre, zim, zlo, sigma_prime; acb_t t; mag_init(r); mag_init(u); mag_init(zre); mag_init(zim); mag_init(zlo); mag_init(sigma_prime); acb_init(t); /* lower bounds for |re(z)|, |im(z)|, |z| */ arb_get_mag_lower(zre, acb_realref(z)); arb_get_mag_lower(zim, acb_imagref(z)); acb_get_mag_lower(zlo, z); /* todo: hypot */ /* upper bound for 1/|z| */ mag_one(u); mag_div(zinv, u, zlo); /* upper bound for r = |b - 2a| */ acb_mul_2exp_si(t, a, 1); acb_sub(t, b, t, MAG_BITS); acb_get_mag(r, t); /* determine region */ *R = 0; if (mag_cmp(zlo, r) >= 0) { int znonneg = arb_is_nonnegative(acb_realref(z)); if (znonneg && mag_cmp(zre, r) >= 0) { *R = 1; } else if (mag_cmp(zim, r) >= 0 || znonneg) { *R = 2; } else { mag_mul_2exp_si(u, r, 1); if (mag_cmp(zlo, u) >= 0) *R = 3; } } if (R == 0) { mag_inf(alpha); mag_inf(nu); mag_inf(sigma); mag_inf(rho); } else { /* sigma = |(b-2a)/z| */ mag_mul(sigma, r, zinv); /* nu = (1/2 + 1/2 sqrt(1-4 sigma^2))^(-1/2) <= 1 + 2 sigma^2 */ if (mag_cmp_2exp_si(sigma, -1) <= 0) { mag_mul(nu, sigma, sigma); mag_mul_2exp_si(nu, nu, 1); mag_one(u); mag_add(nu, nu, u); } else { mag_inf(nu); } /* modified sigma for alpha, beta, rho when in R3 */ if (*R == 3) mag_mul(sigma_prime, sigma, nu); else mag_set(sigma_prime, sigma); /* alpha = 1/(1-sigma') */ mag_one(alpha); mag_sub_lower(alpha, alpha, sigma_prime); mag_one(u); mag_div(alpha, u, alpha); /* rho = |2a^2-2ab+b|/2 + sigma'*(1+sigma'/4)/(1-sigma')^2 */ mag_mul_2exp_si(rho, sigma_prime, -2); mag_one(u); mag_add(rho, rho, u); mag_mul(rho, rho, sigma_prime); mag_mul(rho, rho, alpha); mag_mul(rho, rho, alpha); acb_sub(t, a, b, MAG_BITS); acb_mul(t, t, a, MAG_BITS); acb_mul_2exp_si(t, t, 1); acb_add(t, t, b, MAG_BITS); acb_get_mag(u, t); mag_mul_2exp_si(u, u, -1); mag_add(rho, rho, u); } mag_clear(r); mag_clear(u); mag_clear(zre); mag_clear(zim); mag_clear(zlo); mag_clear(sigma_prime); acb_clear(t); } void acb_hypgeom_mag_chi(mag_t chi, ulong n) { mag_t p, q; ulong k; mag_init(p); mag_init(q); if (n % 2 == 0) { mag_one(p); mag_one(q); } else { /* upper bound for pi/2 */ mag_set_ui_2exp_si(p, 843314857, -28); mag_one(q); } for (k = n; k >= 2; k -= 2) { mag_mul_ui(p, p, k); mag_mul_ui_lower(q, q, k - 1); } mag_div(chi, p, q); mag_clear(p); mag_clear(q); } void acb_hypgeom_u_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, slong n, slong prec) { mag_t C1, Cn, alpha, nu, sigma, rho, zinv, tmp, err; acb_struct aa[3]; acb_t s, t, w, winv; int R, p, q, is_real; if (!acb_is_finite(a) || !acb_is_finite(b) || !acb_is_finite(z)) { acb_indeterminate(res); return; } mag_init(C1); mag_init(Cn); mag_init(alpha); mag_init(nu); mag_init(sigma); mag_init(rho); mag_init(zinv); mag_init(tmp); mag_init(err); acb_init(aa); acb_init(aa + 1); acb_init(aa + 2); acb_init(s); acb_init(t); acb_init(w); acb_init(winv); /* special case, for incomplete gamma [todo: also when they happen to be exact and with difference 1...] */ if (a == b) { acb_set(aa, a); p = 1; q = 0; } else { acb_set(aa, a); acb_sub(aa + 1, a, b, prec); acb_add_ui(aa + 1, aa + 1, 1, prec); acb_one(aa + 2); p = 2; q = 1; } is_real = acb_is_real(a) && acb_is_real(b) && acb_is_real(z) && arb_is_positive(acb_realref(z)); acb_neg(w, z); acb_inv(w, w, prec); acb_neg(winv, z); if (n < 0) n = acb_hypgeom_pfq_choose_n(aa, p, aa + p, q, w, prec); /* todo: handle the exact polynomial case better... */ acb_hypgeom_u_asymp_bound_factors(&R, alpha, nu, sigma, rho, zinv, a, b, z); if (R == 0) { acb_indeterminate(res); } else { acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n, prec); if (R == 1) { mag_one(C1); mag_one(Cn); } else { acb_hypgeom_mag_chi(C1, 1); acb_hypgeom_mag_chi(Cn, n); if (R == 3) { mag_mul(tmp, nu, nu); mag_mul(tmp, tmp, sigma); mag_add(C1, C1, tmp); mag_mul(C1, C1, nu); mag_mul_ui(tmp, tmp, n); mag_add(Cn, Cn, tmp); mag_pow_ui(tmp, nu, n); mag_mul(Cn, Cn, tmp); } } mag_mul(tmp, C1, rho); mag_mul(tmp, tmp, alpha); mag_mul(tmp, tmp, zinv); mag_mul_2exp_si(tmp, tmp, 1); mag_exp(err, tmp); mag_mul(err, err, Cn); mag_mul(err, err, alpha); mag_mul_2exp_si(err, err, 1); /* nth term * factor */ acb_get_mag(tmp, t); mag_mul(err, err, tmp); if (is_real) arb_add_error_mag(acb_realref(s), err); else acb_add_error_mag(s, err); acb_set(res, s); } mag_clear(C1); mag_clear(Cn); mag_clear(alpha); mag_clear(nu); mag_clear(sigma); mag_clear(rho); mag_clear(zinv); mag_clear(tmp); mag_clear(err); acb_clear(aa); acb_clear(aa + 1); acb_clear(aa + 2); acb_clear(s); acb_clear(t); acb_clear(w); acb_clear(winv); }