/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2010 William Hart Copyright (C) 2012 Sebastian Pancratz Copyright (C) 2012 Fredrik Johansson ******************************************************************************/ #include "fmprb_poly.h" void _fmprb_poly_compose_divconquer(fmprb_ptr res, fmprb_srcptr poly1, long len1, fmprb_srcptr poly2, long len2, long prec) { long i, j, k, n; long *hlen, alloc, powlen; fmprb_ptr v, pow, temp; fmprb_ptr * h; if (len1 == 1) { fmprb_set(res, poly1); return; } if (len2 == 1) { _fmprb_poly_evaluate(res, poly1, len1, poly2, prec); return; } if (len1 == 2) { _fmprb_poly_compose_horner(res, poly1, len1, poly2, len2, prec); return; } /* Initialisation */ hlen = (long *) flint_malloc(((len1 + 1) / 2) * sizeof(long)); for (k = 1; (2 << k) < len1; k++) ; hlen[0] = hlen[1] = ((1 << k) - 1) * (len2 - 1) + 1; for (i = k - 1; i > 0; i--) { long hi = (len1 + (1 << i) - 1) / (1 << i); for (n = (hi + 1) / 2; n < hi; n++) hlen[n] = ((1 << i) - 1) * (len2 - 1) + 1; } powlen = (1 << k) * (len2 - 1) + 1; alloc = 0; for (i = 0; i < (len1 + 1) / 2; i++) alloc += hlen[i]; v = _fmprb_vec_init(alloc + 2 * powlen); h = (fmprb_ptr *) flint_malloc(((len1 + 1) / 2) * sizeof(fmprb_ptr)); h[0] = v; for (i = 0; i < (len1 - 1) / 2; i++) { h[i + 1] = h[i] + hlen[i]; hlen[i] = 0; } hlen[(len1 - 1) / 2] = 0; pow = v + alloc; temp = pow + powlen; /* Let's start the actual work */ for (i = 0, j = 0; i < len1 / 2; i++, j += 2) { if (!fmprb_is_zero(poly1 + j + 1)) { _fmprb_vec_scalar_mul(h[i], poly2, len2, poly1 + j + 1, prec); fmprb_add(h[i], h[i], poly1 + j, prec); hlen[i] = len2; } else if (!fmprb_is_zero(poly1 + j)) { fmprb_set(h[i], poly1 + j); hlen[i] = 1; } } if ((len1 & 1L)) { if (!fmprb_is_zero(poly1 + j)) { fmprb_set(h[i], poly1 + j); hlen[i] = 1; } } _fmprb_poly_mul(pow, poly2, len2, poly2, len2, prec); powlen = 2 * len2 - 1; for (n = (len1 + 1) / 2; n > 2; n = (n + 1) / 2) { if (hlen[1] > 0) { long templen = powlen + hlen[1] - 1; _fmprb_poly_mul(temp, pow, powlen, h[1], hlen[1], prec); _fmprb_poly_add(h[0], temp, templen, h[0], hlen[0], prec); hlen[0] = FLINT_MAX(hlen[0], templen); } for (i = 1; i < n / 2; i++) { if (hlen[2*i + 1] > 0) { _fmprb_poly_mul(h[i], pow, powlen, h[2*i + 1], hlen[2*i + 1], prec); hlen[i] = hlen[2*i + 1] + powlen - 1; } else hlen[i] = 0; _fmprb_poly_add(h[i], h[i], hlen[i], h[2*i], hlen[2*i], prec); hlen[i] = FLINT_MAX(hlen[i], hlen[2*i]); } if ((n & 1L)) { _fmprb_vec_set(h[i], h[2*i], hlen[2*i]); hlen[i] = hlen[2*i]; } _fmprb_poly_mul(temp, pow, powlen, pow, powlen, prec); powlen += powlen - 1; { fmprb_ptr t = pow; pow = temp; temp = t; } } _fmprb_poly_mul(res, pow, powlen, h[1], hlen[1], prec); _fmprb_vec_add(res, res, h[0], hlen[0], prec); _fmprb_vec_clear(v, alloc + 2 * powlen); flint_free(h); flint_free(hlen); } void fmprb_poly_compose_divconquer(fmprb_poly_t res, const fmprb_poly_t poly1, const fmprb_poly_t poly2, long prec) { const long len1 = poly1->length; const long len2 = poly2->length; if (len1 == 0) { fmprb_poly_zero(res); } else if (len1 == 1 || len2 == 0) { fmprb_poly_set_fmprb(res, poly1->coeffs); } else { const long lenr = (len1 - 1) * (len2 - 1) + 1; if (res != poly1 && res != poly2) { fmprb_poly_fit_length(res, lenr); _fmprb_poly_compose_divconquer(res->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, prec); } else { fmprb_poly_t t; fmprb_poly_init2(t, lenr); _fmprb_poly_compose_divconquer(t->coeffs, poly1->coeffs, len1, poly2->coeffs, len2, prec); fmprb_poly_swap(res, t); fmprb_poly_clear(t); } _fmprb_poly_set_length(res, lenr); _fmprb_poly_normalise(res); } }