/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2013 Fredrik Johansson ******************************************************************************/ #include "fmpcb_poly.h" #define CUTOFF 5 void _fmpcb_poly_revert_series_newton(fmpcb_ptr Qinv, fmpcb_srcptr Q, long n, long prec) { long i, k, a[FLINT_BITS]; fmpcb_ptr T, U, V; if (n <= 2) { if (n >= 1) fmpcb_zero(Qinv); if (n == 2) fmpcb_inv(Qinv + 1, Q + 1, prec); return; } T = _fmpcb_vec_init(n); U = _fmpcb_vec_init(n); V = _fmpcb_vec_init(n); k = n; for (i = 1; (1L << i) < k; i++); a[i = 0] = k; while (k >= CUTOFF) a[++i] = (k = (k + 1) / 2); _fmpcb_poly_revert_series_lagrange(Qinv, Q, k, prec); _fmpcb_vec_zero(Qinv + k, n - k); for (i--; i >= 0; i--) { k = a[i]; _fmpcb_poly_compose_series(T, Q, k, Qinv, k, k, prec); _fmpcb_poly_derivative(U, T, k, prec); fmpcb_zero(U + k - 1); fmpcb_zero(T + 1); _fmpcb_poly_div_series(V, T, k, U, k, k, prec); _fmpcb_poly_derivative(T, Qinv, k, prec); _fmpcb_poly_mullow(U, V, k, T, k, k, prec); _fmpcb_vec_sub(Qinv, Qinv, U, k, prec); } _fmpcb_vec_clear(T, n); _fmpcb_vec_clear(U, n); _fmpcb_vec_clear(V, n); } void fmpcb_poly_revert_series_newton(fmpcb_poly_t Qinv, const fmpcb_poly_t Q, long n, long prec) { fmpcb_ptr Qcopy; int Qalloc; long Qlen = Q->length; if (Q->length < 2 || !fmpcb_is_zero(Q->coeffs) || fmpcb_contains_zero(Q->coeffs + 1)) { printf("Exception (fmpcb_poly_revert_series_newton). Input must \n" "have zero constant term and nonzero coefficient of x^1.\n"); abort(); } if (n < 2) { fmpcb_poly_zero(Qinv); return; } if (Qlen >= n) { Qcopy = Q->coeffs; Qalloc = 0; } else { long i; Qcopy = _fmpcb_vec_init(n); for (i = 0; i < Qlen; i++) Qcopy[i] = Q->coeffs[i]; Qalloc = 1; } if (Qinv != Q) { fmpcb_poly_fit_length(Qinv, n); _fmpcb_poly_revert_series_newton(Qinv->coeffs, Qcopy, n, prec); } else { fmpcb_poly_t t; fmpcb_poly_init2(t, n); _fmpcb_poly_revert_series_newton(t->coeffs, Qcopy, n, prec); fmpcb_poly_swap(Qinv, t); fmpcb_poly_clear(t); } _fmpcb_poly_set_length(Qinv, n); _fmpcb_poly_normalise(Qinv); if (Qalloc) flint_free(Qcopy); }