/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2013 Fredrik Johansson ******************************************************************************/ #include "fmpcb_poly.h" #include "gamma.h" #include "zeta.h" void _fmpcb_poly_gamma_series(fmpcb_ptr res, fmpcb_srcptr h, long hlen, long len, long prec) { int reflect; long i, rflen, r, n, wp; fmpcb_ptr t, u, v; fmpcb_struct f[2]; hlen = FLINT_MIN(hlen, len); wp = prec + FLINT_BIT_COUNT(prec); t = _fmpcb_vec_init(len); u = _fmpcb_vec_init(len); v = _fmpcb_vec_init(len); fmpcb_init(f); fmpcb_init(f + 1); /* TODO: use real code at real numbers */ if (0) { } else { /* otherwise use Stirling series */ gamma_stirling_choose_param_fmpcb(&reflect, &r, &n, h, 1, 0, wp); /* gamma(h) = (rf(1-h, r) * pi) / (gamma(1-h+r) sin(pi h)), h = h0 + t*/ if (reflect) { /* u = 1/gamma(r+1-h) */ fmpcb_sub_ui(f, h, r + 1, wp); fmpcb_neg(f, f); gamma_stirling_eval_fmpcb_series(t, f, n, len, wp); _fmpcb_vec_neg(t, t, len); _fmpcb_poly_exp_series(u, t, len, len, wp); for (i = 1; i < len; i += 2) fmpcb_neg(u + i, u + i); /* v = 1/sin(pi x) */ fmpcb_const_pi(f + 1, wp); fmpcb_mul(f, h, f + 1, wp); _fmpcb_poly_sin_series(t, f, 2, len, wp); _fmpcb_poly_inv_series(v, t, len, len, wp); _fmpcb_poly_mullow(t, u, len, v, len, len, wp); /* rf(1-h,r) * pi */ if (r == 0) { rflen = 1; fmpcb_const_pi(u, wp); } else { fmpcb_sub_ui(f, h, 1, wp); fmpcb_neg(f, f); fmpcb_set_si(f + 1, -1); rflen = FLINT_MIN(len, r + 1); _fmpcb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r, rflen, wp); fmpcb_const_pi(v, wp); _fmpcb_vec_scalar_mul(u, u, rflen, v, wp); } /* multiply by rising factorial */ _fmpcb_poly_mullow(v, t, len, u, rflen, len, wp); } else { /* gamma(h) = gamma(h+r) / rf(h,r) */ if (r == 0) { fmpcb_add_ui(f, h, r, wp); gamma_stirling_eval_fmpcb_series(t, f, n, len, wp); _fmpcb_poly_exp_series(v, t, len, len, wp); } else { /* TODO: div_series may be better (once it has a good basecase), if the rising factorial is short */ fmpcb_set(f, h); fmpcb_one(f + 1); rflen = FLINT_MIN(len, r + 1); _fmpcb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r, rflen, wp); _fmpcb_poly_inv_series(t, u, rflen, len, wp); fmpcb_add_ui(f, h, r, wp); gamma_stirling_eval_fmpcb_series(v, f, n, len, wp); _fmpcb_poly_exp_series(u, v, len, len, wp); _fmpcb_poly_mullow(v, u, len, t, len, len, wp); } } } /* compose with nonconstant part */ fmpcb_zero(t); _fmpcb_vec_set(t + 1, h + 1, hlen - 1); _fmpcb_poly_compose_series(res, v, len, t, hlen, len, prec); fmpcb_clear(f); fmpcb_clear(f + 1); _fmpcb_vec_clear(t, len); _fmpcb_vec_clear(u, len); _fmpcb_vec_clear(v, len); } void fmpcb_poly_gamma_series(fmpcb_poly_t res, const fmpcb_poly_t f, long n, long prec) { fmpcb_poly_fit_length(res, n); if (f->length == 0 || n == 0) _fmpcb_vec_indeterminate(res->coeffs, n); else _fmpcb_poly_gamma_series(res->coeffs, f->coeffs, f->length, n, prec); _fmpcb_poly_set_length(res, n); _fmpcb_poly_normalise(res); }