/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2012 Fredrik Johansson ******************************************************************************/ #include "fmpcb.h" #include "fmpcb_poly.h" #include "bernoulli.h" /* res = src * (c + x) */ void _fmpcb_poly_mullow_cpx(fmpcb_struct * res, const fmpcb_struct * src, long len, const fmpcb_t c, long trunc, long prec) { long i; if (len < trunc) fmpcb_set(res + len, src + len - 1); for (i = len - 1; i > 0; i--) { fmpcb_mul(res + i, src + i, c, prec); fmpcb_add(res + i, res + i, src + i - 1, prec); } fmpcb_mul(res, src, c, prec); } /* series of 1/N^(c+x) */ void _fmpcb_poly_ui_invpow_cpx(fmpcb_struct * res, ulong N, const fmpcb_t c, long trunc, long prec) { long i; fmpcb_t logN; fmpcb_init(logN); fmprb_log_ui(fmpcb_realref(logN), N, prec); fmpcb_mul(res + 0, logN, c, prec); fmpcb_neg(res + 0, res + 0); fmpcb_exp(res + 0, res + 0, prec); for (i = 1; i < trunc; i++) { fmpcb_mul(res + i, res + i - 1, logN, prec); fmpcb_div_si(res + i, res + i, -i, prec); } fmpcb_clear(logN); } void _fmpcb_poly_fmpcb_invpow_cpx(fmpcb_struct * res, const fmpcb_t N, const fmpcb_t c, long trunc, long prec) { long i; fmpcb_t logN; fmpcb_init(logN); fmpcb_log(logN, N, prec); fmpcb_mul(res + 0, logN, c, prec); fmpcb_neg(res + 0, res + 0); fmpcb_exp(res + 0, res + 0, prec); for (i = 1; i < trunc; i++) { fmpcb_mul(res + i, res + i - 1, logN, prec); fmpcb_div_si(res + i, res + i, -i, prec); } fmpcb_clear(logN); } void fmpcb_zeta_series_em_sum(fmpcb_struct * z, const fmpcb_t s, const fmpcb_t a, int deflate, ulong N, ulong M, long d, long prec) { fmpcb_struct *t, *u, *v, *term, *sum; fmpcb_t splus, Na, rec; fmprb_t x; fmpz_t c; long i; ulong r, n; bernoulli_cache_compute(2 * M + 1); t = _fmpcb_vec_init(d + 1); u = _fmpcb_vec_init(d); v = _fmpcb_vec_init(d); term = _fmpcb_vec_init(d); sum = _fmpcb_vec_init(d); fmpcb_init(splus); fmpcb_init(Na); fmpcb_init(rec); fmprb_init(x); fmpz_init(c); /* sum 1/(n+a)^(s+x) */ for (n = 0; n < N; n++) { fmpcb_add_ui(Na, a, n, prec); _fmpcb_poly_fmpcb_invpow_cpx(t, Na, s, d, prec); _fmpcb_vec_add(sum, sum, t, d, prec); } /* t = 1/(N+a)^(s+x); we might need one extra term for deflation */ fmpcb_add_ui(Na, a, N, prec); _fmpcb_poly_fmpcb_invpow_cpx(t, Na, s, d + 1, prec); /* sum += (N+a) * 1/((s+x)-1) * t */ if (!deflate) { /* u = 1/(s+x) has series [1/(s-1), -1/(s-1)^2, 1/(s-1)^3, ...] */ fmpcb_sub_ui(u + 0, s, 1, prec); fmpcb_inv(u + 0, u + 0, prec); for (i = 1; i < d; i++) fmpcb_mul(u + i, u + i - 1, u + 0, prec); for (i = 1; i < d; i += 2) fmpcb_neg(u + i, u + i); _fmpcb_poly_mullow(v, u, d, t, d, d, prec); _fmpcb_vec_scalar_mul(v, v, d, Na, prec); _fmpcb_vec_add(sum, sum, v, d, prec); } /* sum += ((N+a)^(1-(s+x)) - 1) / ((s+x) - 1) */ else { /* at s = 1, this becomes (N*t - 1)/x, i.e. just remove one coeff */ if (fmpcb_is_one(s)) { for (i = 0; i < d; i++) fmpcb_mul(u + i, t + i + 1, Na, prec); _fmpcb_vec_add(sum, sum, u, d, prec); } else { /* TODO: this is numerically unstable for large derivatives, and divides by zero if s contains 1. We want a good way to evaluate the power series ((N+a)^y - 1) / y where y has nonzero constant term, without doing a division. How is this best done? */ _fmpcb_vec_scalar_mul(t, t, d, Na, prec); fmpcb_sub_ui(t + 0, t + 0, 1, prec); fmpcb_sub_ui(u + 0, s, 1, prec); fmpcb_inv(u + 0, u + 0, prec); for (i = 1; i < d; i++) fmpcb_mul(u + i, u + i - 1, u + 0, prec); for (i = 1; i < d; i += 2) fmpcb_neg(u + i, u + i); _fmpcb_poly_mullow(v, u, d, t, d, d, prec); _fmpcb_vec_add(sum, sum, v, d, prec); _fmpcb_poly_fmpcb_invpow_cpx(t, Na, s, d, prec); } } /* sum += u = 1/2 * t */ _fmpcb_vec_scalar_mul_2exp_si(u, t, d, -1L); _fmpcb_vec_add(sum, sum, u, d, prec); /* term = u * (s+x) / N */ _fmpcb_poly_mullow_cpx(u, u, d, s, d, prec); _fmpcb_vec_scalar_div(term, u, d, Na, prec); /* 1/(N+a)^2 */ fmpcb_mul(Na, Na, Na, prec); fmpcb_inv(Na, Na, prec); for (r = 1; r <= M; r++) { /* sum += bernoulli number * term */ fmprb_set_round_fmpz(x, fmpq_numref(bernoulli_cache + 2 * r), prec); fmprb_div_fmpz(x, x, fmpq_denref(bernoulli_cache + 2 * r), prec); _fmpcb_vec_scalar_mul_fmprb(u, term, d, x, prec); _fmpcb_vec_add(sum, sum, u, d, prec); /* multiply term by ((s+x)+2r-1)((s+x)+2r) / ((N+a)^2 * (2*r+1)*(2*r+2)) */ fmpcb_set(splus, s); fmprb_add_ui(fmpcb_realref(splus), fmpcb_realref(splus), 2*r-1, prec); _fmpcb_poly_mullow_cpx(term, term, d, splus, d, prec); fmprb_add_ui(fmpcb_realref(splus), fmpcb_realref(splus), 1, prec); _fmpcb_poly_mullow_cpx(term, term, d, splus, d, prec); /* TODO: div fmpz when fmpz! */ fmpz_set_ui(c, 2*r+1); fmpz_mul_ui(c, c, 2*r+2); fmpcb_div_fmpz(rec, Na, c, prec); _fmpcb_vec_scalar_mul(term, term, d, rec, prec); } _fmpcb_vec_set(z, sum, d); _fmpcb_vec_clear(t, d + 1); _fmpcb_vec_clear(u, d); _fmpcb_vec_clear(v, d); _fmpcb_vec_clear(term, d); _fmpcb_vec_clear(sum, d); fmpcb_clear(splus); fmpcb_clear(Na); fmpcb_clear(rec); fmprb_clear(x); fmpz_clear(c); }