/*============================================================================= This file is part of ARB. ARB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ARB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ARB; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2012 Fredrik Johansson ******************************************************************************/ #include "fmpcb.h" void fmpcb_invroot_newton(fmpcb_t r, const fmpcb_t a, ulong m, const fmpcb_t r0, long startprec, long prec) { long iters, precs[FLINT_BITS]; long i, extra, wp, rad_prec; fmpr_t en, enew, zlo, zhi, v; fmpcb_t t, z, z_exact; /* stay clear of overflow */ if (m + 2 < m) abort(); fmpr_init(en); fmpr_init(enew); fmpr_init(zlo); fmpr_init(zhi); fmpr_init(v); fmpcb_init(t); fmpcb_init(z); fmpcb_init(z_exact); fmpcb_set(z, r0); rad_prec = FMPRB_RAD_PREC; extra = 10 + FLINT_BIT_COUNT(m); precs[0] = prec + extra; iters = 1; while ((iters < FLINT_BITS) && (precs[iters-1] + extra > 2*startprec)) { precs[iters] = (precs[iters-1] / 2) + extra; iters++; } for (i = iters - 1; i >= 0; i--) { wp = precs[i]; /* printf("lifting to precision %ld\n", wp); */ /* bounds for old error */ fmpcb_get_rad_ubound_fmpr(en, z, rad_prec); fmpcb_get_abs_lbound_fmpr(zlo, z, rad_prec); fmpcb_get_abs_ubound_fmpr(zhi, z, rad_prec); /* to improve, we require |z| > 0, i.e. en < |z| */ if (fmpr_cmp(en, zlo) >= 0) break; /* z[n+1] = z[n] * (m + 1 - a * z[n]^m) / m */ fmpcb_set(z_exact, z); fmpr_zero(fmprb_radref(fmpcb_realref(z_exact))); fmpr_zero(fmprb_radref(fmpcb_imagref(z_exact))); fmpcb_pow_ui(t, z_exact, m, wp); fmpcb_mul(t, t, a, wp); fmpcb_neg(t, t); fmpcb_add_ui(t, t, m + 1, wp); fmpcb_mul(t, t, z_exact, wp); fmpcb_div_ui(t, t, m, wp); /* new error bound = en^2 * (m+1) / (|zn| / (|zn| - en))^(m+2) / |zn| */ fmpr_mul(enew, en, en, rad_prec, FMPR_RND_UP); fmpr_mul_ui(enew, enew, m + 1, rad_prec, FMPR_RND_UP); fmpr_mul(enew, enew, zhi, rad_prec, FMPR_RND_UP); fmpr_sub(v, zlo, en, rad_prec, FMPR_RND_DOWN); fmpr_div(v, zhi, v, rad_prec, FMPR_RND_UP); fmpr_pow_sloppy_ui(v, v, m + 2, rad_prec, FMPR_RND_UP); fmpr_div(v, v, zlo, rad_prec, FMPR_RND_UP); fmpr_mul(enew, enew, v, rad_prec, FMPR_RND_UP); /* quit if there was no improvement */ if (fmpr_cmp(enew, en) >= 0) break; fmpcb_set(z, t); /* add upper bound for new radius */ fmprb_add_error_fmpr(fmpcb_realref(z), enew); fmprb_add_error_fmpr(fmpcb_imagref(z), enew); } fmpcb_set(r, z); fmpcb_clear(t); fmpcb_clear(z); fmpcb_clear(z_exact); fmpr_clear(en); fmpr_clear(enew); fmpr_clear(zlo); fmpr_clear(zhi); fmpr_clear(v); }