port gamma function power series methods

This commit is contained in:
Fredrik Johansson 2014-06-05 00:43:30 +02:00
parent 66d5b62262
commit e7f0fff490
23 changed files with 2556 additions and 15 deletions

13
acb.h
View file

@ -859,6 +859,19 @@ _acb_vec_add_error_arf_vec(acb_ptr res, arf_srcptr err, long len)
acb_add_error_arf(res + i, err + i);
}
static __inline__ void
_acb_vec_add_error_mag_vec(acb_ptr res, mag_srcptr err, long len)
{
long i;
for (i = 0; i < len; i++)
{
mag_add(arb_radref(acb_realref(res + i)),
arb_radref(acb_realref(res + i)), err + i);
mag_add(arb_radref(acb_imagref(res + i)),
arb_radref(acb_imagref(res + i)), err + i);
}
}
static __inline__ void
_acb_vec_indeterminate(acb_ptr vec, long len)
{

View file

@ -490,9 +490,6 @@ void _acb_poly_tan_series(acb_ptr g, acb_srcptr h, long hlen, long len, long pre
void acb_poly_tan_series(acb_poly_t g, const acb_poly_t h, long n, long prec);
/*
TBD:
void _acb_poly_gamma_series(acb_ptr res, acb_srcptr h, long hlen, long len, long prec);
void acb_poly_gamma_series(acb_poly_t res, const acb_poly_t f, long n, long prec);
@ -509,6 +506,10 @@ void _acb_poly_rising_ui_series(acb_ptr res, acb_srcptr f, long flen, ulong r, l
void acb_poly_rising_ui_series(acb_poly_t res, const acb_poly_t f, ulong r, long trunc, long prec);
/*
TBD:
void _acb_poly_zeta_series(acb_ptr res, acb_srcptr h, long hlen, const acb_t a, int deflate, long len, long prec);
void acb_poly_zeta_series(acb_poly_t res, const acb_poly_t f, const acb_t a, int deflate, long n, long prec);

305
acb_poly/gamma_series.c Normal file
View file

@ -0,0 +1,305 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "acb_poly.h"
#include "gamma.h"
#include "zeta.h"
void acb_gamma_stirling_bound(mag_ptr err, const acb_t x, long k0, long knum, long n);
void acb_gamma_stirling_choose_param(int * reflect, long * r, long * n,
const acb_t x, int use_reflect, int digamma, long prec);
void arb_gamma_stirling_coeff(arb_t b, ulong k, int digamma, long prec);
static void
bsplit(acb_ptr Q, acb_ptr T, const acb_t z, long a, long b, long num, long prec)
{
if (b - a == 1)
{
arb_gamma_stirling_coeff(acb_realref(T), a, 0, prec);
arb_zero(acb_imagref(T));
if (a == 1)
{ /* (z + t) */
acb_set(Q, z);
if (num > 1) acb_one(Q + 1);
if (num > 2) acb_zero(Q + 2);
}
else
{ /* (z + t)^2 */
acb_mul(Q, z, z, prec); /* TODO: precompute */
if (num > 1) acb_mul_2exp_si(Q + 1, z, 1);
if (num > 2) acb_one(Q + 2);
}
}
else
{
long m, n1, n2, q1len, q2len, t1len, t2len, qlen, tlen, alloc;
acb_ptr Q1, T1, Q2, T2;
m = a + (b - a) / 2;
n1 = m - a;
n2 = b - m;
q1len = FLINT_MIN(2 * n1 + 1, num);
t1len = FLINT_MIN(2 * n1 - 1, num);
q2len = FLINT_MIN(2 * n2 + 1, num);
t2len = FLINT_MIN(2 * n2 - 1, num);
qlen = FLINT_MIN(q1len + q2len - 1, num);
tlen = FLINT_MIN(t1len + q2len - 1, num);
alloc = q1len + q2len + t1len + t2len;
Q1 = _acb_vec_init(alloc);
Q2 = Q1 + q1len;
T1 = Q2 + q2len;
T2 = T1 + t1len;
bsplit(Q1, T1, z, a, m, num, prec);
bsplit(Q2, T2, z, m, b, num, prec);
_acb_poly_mullow(Q, Q2, q2len, Q1, q1len, qlen, prec);
_acb_poly_mullow(T, Q2, q2len, T1, t1len, tlen, prec);
_acb_poly_add(T, T, tlen, T2, t2len, prec);
_acb_vec_clear(Q1, alloc);
}
}
void
_acb_poly_mullow_cpx(acb_ptr res, acb_srcptr src, long len, const acb_t c, long trunc, long prec)
{
long i;
if (len < trunc)
acb_set(res + len, src + len - 1);
for (i = len - 1; i > 0; i--)
{
acb_mul(res + i, src + i, c, prec);
acb_add(res + i, res + i, src + i - 1, prec);
}
acb_mul(res, src, c, prec);
}
void
_acb_poly_log_cpx_series(acb_ptr res, const acb_t c, long num, long prec)
{
long i;
for (i = 0; i < num; i++)
{
if (i == 0)
acb_log(res + i, c, prec);
else if (i == 1)
acb_inv(res + i, c, prec);
else
acb_mul(res + i, res + i - 1, res + 1, prec);
}
for (i = 2; i < num; i++)
{
acb_div_ui(res + i, res + i, i, prec);
if (i % 2 == 0)
acb_neg(res + i, res + i);
}
}
void
_acb_poly_gamma_stirling_eval(acb_ptr res, const acb_t z, long n, long num, long prec)
{
long tlen, qlen;
acb_ptr T, Q;
mag_ptr err;
acb_t c;
T = _acb_vec_init(num);
Q = _acb_vec_init(num);
err = _mag_vec_init(num);
acb_init(c);
acb_gamma_stirling_bound(err, z, 0, num, n);
if (n <= 1)
{
_acb_vec_zero(res, num);
}
else
{
qlen = FLINT_MIN(2 * (n - 1) + 1, num);
tlen = FLINT_MIN(2 * (n - 1) - 1, num);
bsplit(Q, T, z, 1, n, num, prec);
_acb_poly_div_series(res, T, tlen, Q, qlen, num, prec);
}
/* ((z-1/2) + t) * log(z+t) */
_acb_poly_log_cpx_series(T, z, num, prec);
acb_one(c);
acb_mul_2exp_si(c, c, -1);
acb_sub(c, z, c, prec);
_acb_poly_mullow_cpx(T, T, num, c, num, prec);
/* constant term */
arb_const_log_sqrt2pi(acb_realref(c), prec);
arb_zero(acb_imagref(c));
acb_add(T, T, c, prec);
/* subtract (z+t) */
acb_sub(T, T, z, prec);
if (num > 1)
acb_sub_ui(T + 1, T + 1, 1, prec);
_acb_vec_add(res, res, T, num, prec);
_acb_vec_add_error_mag_vec(res, err, num);
_acb_vec_clear(T, num);
_acb_vec_clear(Q, num);
_mag_vec_clear(err, num);
acb_clear(c);
}
void
_acb_poly_gamma_series(acb_ptr res, acb_srcptr h, long hlen, long len, long prec)
{
int reflect;
long i, rflen, r, n, wp;
acb_ptr t, u, v;
acb_struct f[2];
hlen = FLINT_MIN(hlen, len);
wp = prec + FLINT_BIT_COUNT(prec);
t = _acb_vec_init(len);
u = _acb_vec_init(len);
v = _acb_vec_init(len);
acb_init(f);
acb_init(f + 1);
/* TODO: use real code at real numbers */
if (0)
{
}
else
{
/* otherwise use Stirling series */
acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);
/* gamma(h) = (rf(1-h, r) * pi) / (gamma(1-h+r) sin(pi h)), h = h0 + t*/
if (reflect)
{
/* u = 1/gamma(r+1-h) */
acb_sub_ui(f, h, r + 1, wp);
acb_neg(f, f);
_acb_poly_gamma_stirling_eval(t, f, n, len, wp);
_acb_vec_neg(t, t, len);
_acb_poly_exp_series(u, t, len, len, wp);
for (i = 1; i < len; i += 2)
acb_neg(u + i, u + i);
/* v = 1/sin(pi x) */
acb_const_pi(f + 1, wp);
acb_mul(f, h, f + 1, wp);
_acb_poly_sin_series(t, f, 2, len, wp);
_acb_poly_inv_series(v, t, len, len, wp);
_acb_poly_mullow(t, u, len, v, len, len, wp);
/* rf(1-h,r) * pi */
if (r == 0)
{
rflen = 1;
acb_const_pi(u, wp);
}
else
{
acb_sub_ui(f, h, 1, wp);
acb_neg(f, f);
acb_set_si(f + 1, -1);
rflen = FLINT_MIN(len, r + 1);
_acb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r, rflen, wp);
acb_const_pi(v, wp);
_acb_vec_scalar_mul(u, u, rflen, v, wp);
}
/* multiply by rising factorial */
_acb_poly_mullow(v, t, len, u, rflen, len, wp);
}
else
{
/* gamma(h) = gamma(h+r) / rf(h,r) */
if (r == 0)
{
acb_add_ui(f, h, r, wp);
_acb_poly_gamma_stirling_eval(t, f, n, len, wp);
_acb_poly_exp_series(v, t, len, len, wp);
}
else
{
/* TODO: div_series may be better (once it has a good basecase),
if the rising factorial is short */
acb_set(f, h);
acb_one(f + 1);
rflen = FLINT_MIN(len, r + 1);
_acb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r, rflen, wp);
_acb_poly_inv_series(t, u, rflen, len, wp);
acb_add_ui(f, h, r, wp);
_acb_poly_gamma_stirling_eval(v, f, n, len, wp);
_acb_poly_exp_series(u, v, len, len, wp);
_acb_poly_mullow(v, u, len, t, len, len, wp);
}
}
}
/* compose with nonconstant part */
acb_zero(t);
_acb_vec_set(t + 1, h + 1, hlen - 1);
_acb_poly_compose_series(res, v, len, t, hlen, len, prec);
acb_clear(f);
acb_clear(f + 1);
_acb_vec_clear(t, len);
_acb_vec_clear(u, len);
_acb_vec_clear(v, len);
}
void
acb_poly_gamma_series(acb_poly_t res, const acb_poly_t f, long n, long prec)
{
acb_poly_fit_length(res, n);
if (f->length == 0 || n == 0)
_acb_vec_indeterminate(res->coeffs, n);
else
_acb_poly_gamma_series(res->coeffs, f->coeffs, f->length, n, prec);
_acb_poly_set_length(res, n);
_acb_poly_normalise(res);
}

124
acb_poly/lgamma_series.c Normal file
View file

@ -0,0 +1,124 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "acb_poly.h"
#include "gamma.h"
#include "zeta.h"
void
_acb_log_rising_correct_branch(acb_t t,
const acb_t t_wrong, const acb_t z, ulong r, long prec);
void acb_gamma_stirling_choose_param(int * reflect, long * r, long * n,
const acb_t x, int use_reflect, int digamma, long prec);
void
_acb_poly_gamma_stirling_eval(acb_ptr res, const acb_t z, long n, long num, long prec);
static __inline__ void
_log_rising_ui_series(acb_ptr t, const acb_t x, long r, long len, long prec)
{
acb_struct f[2];
long rflen;
acb_init(f);
acb_init(f + 1);
acb_set(f, x);
acb_one(f + 1);
rflen = FLINT_MIN(len, r + 1);
_acb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, prec);
_acb_poly_log_series(t, t, rflen, len, prec);
_acb_log_rising_correct_branch(t, t, x, r, prec);
acb_clear(f);
acb_clear(f + 1);
}
void
_acb_poly_lgamma_series(acb_ptr res, acb_srcptr h, long hlen, long len, long prec)
{
int reflect;
long r, n, wp;
acb_t zr;
acb_ptr t, u;
hlen = FLINT_MIN(hlen, len);
wp = prec + FLINT_BIT_COUNT(prec);
t = _acb_vec_init(len);
u = _acb_vec_init(len);
acb_init(zr);
/* TODO: use real code at real numbers */
if (0)
{
}
else if (len <= 2)
{
acb_lgamma(u, h, wp);
if (len == 2)
acb_digamma(u + 1, h, wp);
}
else
{
/* otherwise use Stirling series */
acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 0, 0, wp);
acb_add_ui(zr, h, r, wp);
_acb_poly_gamma_stirling_eval(u, zr, n, len, wp);
if (r != 0)
{
_log_rising_ui_series(t, h, r, len, wp);
_acb_vec_sub(u, u, t, len, wp);
}
}
/* compose with nonconstant part */
acb_zero(t);
_acb_vec_set(t + 1, h + 1, hlen - 1);
_acb_poly_compose_series(res, u, len, t, hlen, len, prec);
acb_clear(zr);
_acb_vec_clear(t, len);
_acb_vec_clear(u, len);
}
void
acb_poly_lgamma_series(acb_poly_t res, const acb_poly_t f, long n, long prec)
{
acb_poly_fit_length(res, n);
if (f->length == 0 || n == 0)
_acb_vec_indeterminate(res->coeffs, n);
else
_acb_poly_lgamma_series(res->coeffs, f->coeffs, f->length, n, prec);
_acb_poly_set_length(res, n);
_acb_poly_normalise(res);
}

156
acb_poly/rgamma_series.c Normal file
View file

@ -0,0 +1,156 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "acb_poly.h"
#include "gamma.h"
#include "zeta.h"
void acb_gamma_stirling_choose_param(int * reflect, long * r, long * n,
const acb_t x, int use_reflect, int digamma, long prec);
void
_acb_poly_gamma_stirling_eval(acb_ptr res, const acb_t z, long n, long num, long prec);
void
_acb_poly_rgamma_series(acb_ptr res, acb_srcptr h, long hlen, long len, long prec)
{
int reflect;
long i, rflen, r, n, wp;
acb_ptr t, u, v;
acb_struct f[2];
hlen = FLINT_MIN(hlen, len);
wp = prec + FLINT_BIT_COUNT(prec);
t = _acb_vec_init(len);
u = _acb_vec_init(len);
v = _acb_vec_init(len);
acb_init(f);
acb_init(f + 1);
/* TODO: use real code at real numbers */
if (0)
{
}
else
{
/* otherwise use Stirling series */
acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);
/* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/
if (reflect)
{
/* u = gamma(r+1-h) */
acb_sub_ui(f, h, r + 1, wp);
acb_neg(f, f);
_acb_poly_gamma_stirling_eval(t, f, n, len, wp);
_acb_poly_exp_series(u, t, len, len, wp);
for (i = 1; i < len; i += 2)
acb_neg(u + i, u + i);
/* v = sin(pi x) */
acb_const_pi(f + 1, wp);
acb_mul(f, h, f + 1, wp);
_acb_poly_sin_series(v, f, 2, len, wp);
_acb_poly_mullow(t, u, len, v, len, len, wp);
/* rf(1-h,r) * pi */
if (r == 0)
{
acb_const_pi(u, wp);
_acb_vec_scalar_div(v, t, len, u, wp);
}
else
{
acb_sub_ui(f, h, 1, wp);
acb_neg(f, f);
acb_set_si(f + 1, -1);
rflen = FLINT_MIN(len, r + 1);
_acb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp);
acb_const_pi(u, wp);
_acb_vec_scalar_mul(v, v, rflen, u, wp);
/* divide by rising factorial */
/* TODO: might better to use div_series, when it has a good basecase */
_acb_poly_inv_series(u, v, rflen, len, wp);
_acb_poly_mullow(v, t, len, u, len, len, wp);
}
}
else
{
/* rgamma(h) = rgamma(h+r) rf(h,r) */
if (r == 0)
{
acb_add_ui(f, h, r, wp);
_acb_poly_gamma_stirling_eval(t, f, n, len, wp);
_acb_vec_neg(t, t, len);
_acb_poly_exp_series(v, t, len, len, wp);
}
else
{
acb_set(f, h);
acb_one(f + 1);
rflen = FLINT_MIN(len, r + 1);
_acb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp);
acb_add_ui(f, h, r, wp);
_acb_poly_gamma_stirling_eval(v, f, n, len, wp);
_acb_vec_neg(v, v, len);
_acb_poly_exp_series(u, v, len, len, wp);
_acb_poly_mullow(v, u, len, t, rflen, len, wp);
}
}
}
/* compose with nonconstant part */
acb_zero(t);
_acb_vec_set(t + 1, h + 1, hlen - 1);
_acb_poly_compose_series(res, v, len, t, hlen, len, prec);
acb_clear(f);
acb_clear(f + 1);
_acb_vec_clear(t, len);
_acb_vec_clear(u, len);
_acb_vec_clear(v, len);
}
void
acb_poly_rgamma_series(acb_poly_t res, const acb_poly_t f, long n, long prec)
{
if (f->length == 0 || n == 0)
{
acb_poly_zero(res);
}
else
{
acb_poly_fit_length(res, n);
_acb_poly_rgamma_series(res->coeffs, f->coeffs, f->length, n, prec);
_acb_poly_set_length(res, n);
_acb_poly_normalise(res);
}
}

120
acb_poly/rising_ui_series.c Normal file
View file

@ -0,0 +1,120 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012, 2013 Fredrik Johansson
******************************************************************************/
#include "acb_poly.h"
#include "gamma.h"
static void
_acb_poly_rising_ui_series_bsplit(acb_ptr res,
acb_srcptr f, long flen, ulong a, ulong b,
long trunc, long prec)
{
flen = FLINT_MIN(flen, trunc);
if (b - a == 1)
{
acb_add_ui(res, f, a, prec);
_acb_vec_set(res + 1, f + 1, flen - 1);
}
else
{
acb_ptr L, R;
long len1, len2;
long m = a + (b - a) / 2;
len1 = poly_pow_length(flen, m - a, trunc);
len2 = poly_pow_length(flen, b - m, trunc);
L = _acb_vec_init(len1 + len2);
R = L + len1;
_acb_poly_rising_ui_series_bsplit(L, f, flen, a, m, trunc, prec);
_acb_poly_rising_ui_series_bsplit(R, f, flen, m, b, trunc, prec);
_acb_poly_mullow(res, L, len1, R, len2,
FLINT_MIN(trunc, len1 + len2 - 1), prec);
_acb_vec_clear(L, len1 + len2);
}
}
void
_acb_poly_rising_ui_series(acb_ptr res,
acb_srcptr f, long flen, ulong r,
long trunc, long prec)
{
if (trunc == 1 || flen == 1)
{
acb_rising_ui(res, f, r, prec);
_acb_vec_zero(res + 1, trunc - 1);
}
else if (trunc == 2)
{
acb_rising2_ui(res, res + 1, f, r, prec);
acb_mul(res + 1, res + 1, f + 1, prec);
}
else
{
_acb_poly_rising_ui_series_bsplit(res, f, flen, 0, r, trunc, prec);
}
}
void
acb_poly_rising_ui_series(acb_poly_t res, const acb_poly_t f, ulong r, long trunc, long prec)
{
long len;
if (f->length == 0 && r != 0)
{
acb_poly_zero(res);
return;
}
if (r == 0)
{
acb_poly_one(res);
return;
}
len = poly_pow_length(f->length, r, trunc);
if (f == res)
{
acb_poly_t tmp;
acb_poly_init(tmp);
acb_poly_rising_ui_series(tmp, f, r, len, prec);
acb_poly_swap(tmp, res);
acb_poly_clear(tmp);
}
else
{
acb_poly_fit_length(res, len);
_acb_poly_rising_ui_series(res->coeffs, f->coeffs, f->length, r, len, prec);
_acb_poly_set_length(res, len);
_acb_poly_normalise(res);
}
}

View file

@ -0,0 +1,114 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012, 2013 Fredrik Johansson
******************************************************************************/
#include "acb_poly.h"
int main()
{
long iter;
flint_rand_t state;
printf("gamma_series....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 1000; iter++)
{
long m, n1, n2, rbits1, rbits2, rbits3;
acb_poly_t a, b, c, d;
rbits1 = 2 + n_randint(state, 200);
rbits2 = 2 + n_randint(state, 200);
rbits3 = 2 + n_randint(state, 200);
m = 1 + n_randint(state, 25);
n1 = 1 + n_randint(state, 25);
n2 = 1 + n_randint(state, 25);
acb_poly_init(a);
acb_poly_init(b);
acb_poly_init(c);
acb_poly_init(d);
acb_poly_randtest(a, state, m, rbits1, 3);
acb_poly_gamma_series(b, a, n1, rbits2);
acb_poly_gamma_series(c, a, n2, rbits3);
acb_poly_set(d, b);
acb_poly_truncate(d, FLINT_MIN(n1, n2));
acb_poly_truncate(c, FLINT_MIN(n1, n2));
if (!acb_poly_overlaps(c, d))
{
printf("FAIL\n\n");
printf("n1 = %ld, n2 = %ld, bits2 = %ld, bits3 = %ld\n", n1, n2, rbits2, rbits3);
printf("a = "); acb_poly_printd(a, 15); printf("\n\n");
printf("b = "); acb_poly_printd(b, 15); printf("\n\n");
printf("c = "); acb_poly_printd(c, 15); printf("\n\n");
abort();
}
/* check gamma(a) * a = gamma(a+1) */
acb_poly_mullow(c, b, a, n1, rbits2);
acb_poly_set(d, a);
acb_add_ui(d->coeffs, d->coeffs, 1, rbits2);
acb_poly_gamma_series(d, d, n1, rbits2);
if (!acb_poly_overlaps(c, d))
{
printf("FAIL (functional equation, n1 = %ld)\n\n", n1);
printf("a = "); acb_poly_printd(a, 15); printf("\n\n");
printf("b = "); acb_poly_printd(b, 15); printf("\n\n");
printf("c = "); acb_poly_printd(c, 15); printf("\n\n");
printf("d = "); acb_poly_printd(d, 15); printf("\n\n");
abort();
}
acb_poly_gamma_series(a, a, n1, rbits2);
if (!acb_poly_overlaps(a, b))
{
printf("FAIL (aliasing)\n\n");
abort();
}
acb_poly_clear(a);
acb_poly_clear(b);
acb_poly_clear(c);
acb_poly_clear(d);
}
flint_randclear(state);
flint_cleanup();
printf("PASS\n");
return EXIT_SUCCESS;
}

View file

@ -0,0 +1,115 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012, 2013 Fredrik Johansson
******************************************************************************/
#include "acb_poly.h"
int main()
{
long iter;
flint_rand_t state;
printf("lgamma_series....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 500; iter++)
{
long m, n1, n2, rbits1, rbits2, rbits3;
acb_poly_t a, b, c, d;
rbits1 = 2 + n_randint(state, 200);
rbits2 = 2 + n_randint(state, 200);
rbits3 = 2 + n_randint(state, 200);
m = 1 + n_randint(state, 30);
n1 = 1 + n_randint(state, 30);
n2 = 1 + n_randint(state, 30);
acb_poly_init(a);
acb_poly_init(b);
acb_poly_init(c);
acb_poly_init(d);
acb_poly_randtest(a, state, m, rbits1, 3);
acb_poly_lgamma_series(b, a, n1, rbits2);
acb_poly_lgamma_series(c, a, n2, rbits3);
acb_poly_set(d, b);
acb_poly_truncate(d, FLINT_MIN(n1, n2));
acb_poly_truncate(c, FLINT_MIN(n1, n2));
if (!acb_poly_overlaps(c, d))
{
printf("FAIL\n\n");
printf("n1 = %ld, n2 = %ld, bits2 = %ld, bits3 = %ld\n", n1, n2, rbits2, rbits3);
printf("a = "); acb_poly_printd(a, 15); printf("\n\n");
printf("b = "); acb_poly_printd(b, 15); printf("\n\n");
printf("c = "); acb_poly_printd(c, 15); printf("\n\n");
abort();
}
/* check loggamma(a) + log(a) = loggamma(a+1) */
acb_poly_log_series(c, a, n1, rbits2);
acb_poly_add(c, b, c, rbits2);
acb_poly_set(d, a);
acb_add_ui(d->coeffs, d->coeffs, 1, rbits2);
acb_poly_lgamma_series(d, d, n1, rbits2);
if (!acb_poly_overlaps(c, d))
{
printf("FAIL (functional equation)\n\n");
printf("a = "); acb_poly_printd(a, 15); printf("\n\n");
printf("b = "); acb_poly_printd(b, 15); printf("\n\n");
printf("c = "); acb_poly_printd(c, 15); printf("\n\n");
printf("d = "); acb_poly_printd(d, 15); printf("\n\n");
abort();
}
acb_poly_lgamma_series(a, a, n1, rbits2);
if (!acb_poly_overlaps(a, b))
{
printf("FAIL (aliasing)\n\n");
abort();
}
acb_poly_clear(a);
acb_poly_clear(b);
acb_poly_clear(c);
acb_poly_clear(d);
}
flint_randclear(state);
flint_cleanup();
printf("PASS\n");
return EXIT_SUCCESS;
}

View file

@ -0,0 +1,113 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012, 2013 Fredrik Johansson
******************************************************************************/
#include "acb_poly.h"
int main()
{
long iter;
flint_rand_t state;
printf("rgamma_series....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 1000; iter++)
{
long m, n1, n2, rbits1, rbits2, rbits3;
acb_poly_t a, b, c, d;
rbits1 = 2 + n_randint(state, 200);
rbits2 = 2 + n_randint(state, 200);
rbits3 = 2 + n_randint(state, 200);
m = 1 + n_randint(state, 30);
n1 = 1 + n_randint(state, 30);
n2 = 1 + n_randint(state, 30);
acb_poly_init(a);
acb_poly_init(b);
acb_poly_init(c);
acb_poly_init(d);
acb_poly_randtest(a, state, m, rbits1, 3);
acb_poly_rgamma_series(b, a, n1, rbits2);
acb_poly_rgamma_series(c, a, n2, rbits3);
acb_poly_set(d, b);
acb_poly_truncate(d, FLINT_MIN(n1, n2));
acb_poly_truncate(c, FLINT_MIN(n1, n2));
if (!acb_poly_overlaps(c, d))
{
printf("FAIL\n\n");
printf("n1 = %ld, n2 = %ld, bits2 = %ld, bits3 = %ld\n", n1, n2, rbits2, rbits3);
printf("a = "); acb_poly_printd(a, 15); printf("\n\n");
printf("b = "); acb_poly_printd(b, 15); printf("\n\n");
printf("c = "); acb_poly_printd(c, 15); printf("\n\n");
abort();
}
/* check rgamma(a) = a gamma(a+1) */
acb_poly_set(d, a);
acb_add_ui(d->coeffs, d->coeffs, 1, rbits2);
acb_poly_rgamma_series(d, d, n1, rbits2);
acb_poly_mullow(c, d, a, n1, rbits2);
if (!acb_poly_overlaps(b, c))
{
printf("FAIL (functional equation, n1 = %ld)\n\n", n1);
printf("a = "); acb_poly_printd(a, 15); printf("\n\n");
printf("b = "); acb_poly_printd(b, 15); printf("\n\n");
printf("c = "); acb_poly_printd(c, 15); printf("\n\n");
printf("d = "); acb_poly_printd(d, 15); printf("\n\n");
abort();
}
acb_poly_rgamma_series(a, a, n1, rbits2);
if (!acb_poly_overlaps(a, b))
{
printf("FAIL (aliasing)\n\n");
abort();
}
acb_poly_clear(a);
acb_poly_clear(b);
acb_poly_clear(c);
acb_poly_clear(d);
}
flint_randclear(state);
flint_cleanup();
printf("PASS\n");
return EXIT_SUCCESS;
}

View file

@ -0,0 +1,128 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include "acb_poly.h"
int main()
{
long iter;
flint_rand_t state;
printf("rising_ui_series....");
fflush(stdout);
flint_randinit(state);
/* check rf(f, a) * rf(f + a, b) = rf(f, a + b) */
for (iter = 0; iter < 1000; iter++)
{
long bits, trunc;
ulong a, b;
acb_poly_t f, g, h1, h2, h1h2, h3;
bits = 2 + n_randint(state, 200);
trunc = 1 + n_randint(state, 20);
a = n_randint(state, 10);
b = n_randint(state, 10);
acb_poly_init(f);
acb_poly_init(g);
acb_poly_init(h1);
acb_poly_init(h2);
acb_poly_init(h1h2);
acb_poly_init(h3);
acb_poly_randtest(f, state, 1 + n_randint(state, 20), bits, 4);
acb_poly_set(g, f);
/* g = f + 1 */
if (g->length == 0)
{
acb_poly_fit_length(g, 1);
acb_set_ui(g->coeffs, a);
_acb_poly_set_length(g, 1);
_acb_poly_normalise(g);
}
else
{
acb_add_ui(g->coeffs, g->coeffs, a, bits);
_acb_poly_normalise(g);
}
acb_poly_rising_ui_series(h1, f, a, trunc, bits);
acb_poly_rising_ui_series(h2, g, b, trunc, bits);
acb_poly_rising_ui_series(h3, f, a + b, trunc, bits);
acb_poly_mullow(h1h2, h1, h2, trunc, bits);
if (!acb_poly_overlaps(h1h2, h3))
{
printf("FAIL\n\n");
printf("bits = %ld\n", bits);
printf("trunc = %ld\n", trunc);
printf("a = %lu\n", a);
printf("b = %lu\n", a);
printf("f = "); acb_poly_printd(f, 15); printf("\n\n");
printf("g = "); acb_poly_printd(g, 15); printf("\n\n");
printf("h1 = "); acb_poly_printd(h1, 15); printf("\n\n");
printf("h2 = "); acb_poly_printd(h2, 15); printf("\n\n");
printf("h1h2 = "); acb_poly_printd(h1h2, 15); printf("\n\n");
printf("h3 = "); acb_poly_printd(h3, 15); printf("\n\n");
abort();
}
acb_poly_rising_ui_series(f, f, a, trunc, bits);
if (!acb_poly_equal(f, h1))
{
printf("FAIL (aliasing)\n\n");
printf("bits = %ld\n", bits);
printf("trunc = %ld\n", trunc);
printf("a = %lu\n", a);
printf("b = %lu\n", a);
printf("f = "); acb_poly_printd(f, 15); printf("\n\n");
printf("h1 = "); acb_poly_printd(h1, 15); printf("\n\n");
abort();
}
acb_poly_clear(f);
acb_poly_clear(g);
acb_poly_clear(h1);
acb_poly_clear(h2);
acb_poly_clear(h1h2);
acb_poly_clear(h3);
}
flint_randclear(state);
flint_cleanup();
printf("PASS\n");
return EXIT_SUCCESS;
}

9
arb.h
View file

@ -854,7 +854,6 @@ _arb_vec_set_powers(arb_ptr xs, const arb_t x, long len, long prec)
}
}
/* TODO: mag version ? */
static __inline__ void
_arb_vec_add_error_arf_vec(arb_ptr res, arf_srcptr err, long len)
{
@ -863,6 +862,14 @@ _arb_vec_add_error_arf_vec(arb_ptr res, arf_srcptr err, long len)
arb_add_error_arf(res + i, err + i);
}
static __inline__ void
_arb_vec_add_error_mag_vec(arb_ptr res, mag_srcptr err, long len)
{
long i;
for (i = 0; i < len; i++)
mag_add(arb_radref(res + i), arb_radref(res + i), err + i);
}
static __inline__ void
_arb_vec_indeterminate(arb_ptr vec, long len)
{

View file

@ -546,25 +546,21 @@ void arb_poly_evaluate2_acb_rectangular(acb_t y, acb_t z, const arb_poly_t f, co
void _arb_poly_evaluate2_acb(acb_t y, acb_t z, arb_srcptr f, long len, const acb_t x, long prec);
void arb_poly_evaluate2_acb(acb_t y, acb_t z, const arb_poly_t f, const acb_t x, long prec);
/*
TBD:
void _arb_poly_gamma_series(arb_ptr res, arb_srcptr h, long hlen, long len, long prec);
void arb_poly_gamma_series(arb_poly_t res, const arb_poly_t f, long n, long prec);
void _arb_poly_rgamma_series(arb_ptr res, arb_srcptr h, long hlen, long len, long prec);
void arb_poly_rgamma_series(arb_poly_t res, const arb_poly_t f, long n, long prec);
void _arb_poly_lgamma_series(arb_ptr res, arb_srcptr h, long hlen, long len, long prec);
void arb_poly_lgamma_series(arb_poly_t res, const arb_poly_t f, long n, long prec);
void _arb_poly_rising_ui_series(arb_ptr res, arb_srcptr f, long flen, ulong r, long trunc, long prec);
void arb_poly_rising_ui_series(arb_poly_t res, const arb_poly_t f, ulong r, long trunc, long prec);
/*
TBD:
void _arb_poly_zeta_series(arb_ptr res, arb_srcptr h, long hlen, const arb_t a, int deflate, long len, long prec);
void arb_poly_zeta_series(arb_poly_t res, const arb_poly_t f, const arb_t a, int deflate, long n, long prec);

350
arb_poly/gamma_series.c Normal file
View file

@ -0,0 +1,350 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
#include "gamma.h"
void arb_gamma_stirling_bound(mag_ptr err, const arb_t x, long k0, long knum, long n);
void arb_gamma_stirling_choose_param(int * reflect, long * r, long * n,
const arb_t x, int use_reflect, int digamma, long prec);
void arb_gamma_stirling_coeff(arb_t b, ulong k, int digamma, long prec);
long
arf_get_si(const arf_t x, arf_rnd_t rnd)
{
fmpr_t t;
long v;
fmpr_init(t);
arf_get_fmpr(t, x);
v = fmpr_get_si(t, rnd);
fmpr_clear(t);
return v;
}
void
_arb_poly_lgamma_series_at_one(arb_ptr u, long len, long prec)
{
fmprb_ptr t;
long i;
t = _fmprb_vec_init(len);
gamma_lgamma_series_at_one(t, len, prec);
for (i = 0; i < len; i++)
arb_set_fmprb(u + i, t + i);
_fmprb_vec_clear(t, len);
}
static void
bsplit(arb_ptr Q, arb_ptr T, const arb_t z, long a, long b, long num, long prec)
{
if (b - a == 1)
{
arb_gamma_stirling_coeff(T, a, 0, prec);
if (a == 1)
{ /* (z + t) */
arb_set(Q, z);
if (num > 1) arb_one(Q + 1);
if (num > 2) arb_zero(Q + 2);
}
else
{ /* (z + t)^2 */
arb_mul(Q, z, z, prec); /* TODO: precompute */
if (num > 1) arb_mul_2exp_si(Q + 1, z, 1);
if (num > 2) arb_one(Q + 2);
}
}
else
{
long m, n1, n2, q1len, q2len, t1len, t2len, qlen, tlen, alloc;
arb_ptr Q1, T1, Q2, T2;
m = a + (b - a) / 2;
n1 = m - a;
n2 = b - m;
q1len = FLINT_MIN(2 * n1 + 1, num);
t1len = FLINT_MIN(2 * n1 - 1, num);
q2len = FLINT_MIN(2 * n2 + 1, num);
t2len = FLINT_MIN(2 * n2 - 1, num);
qlen = FLINT_MIN(q1len + q2len - 1, num);
tlen = FLINT_MIN(t1len + q2len - 1, num);
alloc = q1len + q2len + t1len + t2len;
Q1 = _arb_vec_init(alloc);
Q2 = Q1 + q1len;
T1 = Q2 + q2len;
T2 = T1 + t1len;
bsplit(Q1, T1, z, a, m, num, prec);
bsplit(Q2, T2, z, m, b, num, prec);
_arb_poly_mullow(Q, Q2, q2len, Q1, q1len, qlen, prec);
_arb_poly_mullow(T, Q2, q2len, T1, t1len, tlen, prec);
_arb_poly_add(T, T, tlen, T2, t2len, prec);
_arb_vec_clear(Q1, alloc);
}
}
void
_arb_poly_mullow_cpx(arb_ptr res, arb_srcptr src, long len, const arb_t c, long trunc, long prec)
{
long i;
if (len < trunc)
arb_set(res + len, src + len - 1);
for (i = len - 1; i > 0; i--)
{
arb_mul(res + i, src + i, c, prec);
arb_add(res + i, res + i, src + i - 1, prec);
}
arb_mul(res, src, c, prec);
}
void
_arb_poly_log_cpx_series(arb_ptr res, const arb_t c, long num, long prec)
{
long i;
for (i = 0; i < num; i++)
{
if (i == 0)
arb_log(res + i, c, prec);
else if (i == 1)
arb_inv(res + i, c, prec);
else
arb_mul(res + i, res + i - 1, res + 1, prec);
}
for (i = 2; i < num; i++)
{
arb_div_ui(res + i, res + i, i, prec);
if (i % 2 == 0)
arb_neg(res + i, res + i);
}
}
void
_arb_poly_gamma_stirling_eval(arb_ptr res, const arb_t z, long n, long num, long prec)
{
long tlen, qlen;
arb_ptr T, Q;
mag_ptr err;
arb_t c;
T = _arb_vec_init(num);
Q = _arb_vec_init(num);
err = _mag_vec_init(num);
arb_init(c);
arb_gamma_stirling_bound(err, z, 0, num, n);
if (n <= 1)
{
_arb_vec_zero(res, num);
}
else
{
qlen = FLINT_MIN(2 * (n - 1) + 1, num);
tlen = FLINT_MIN(2 * (n - 1) - 1, num);
bsplit(Q, T, z, 1, n, num, prec);
_arb_poly_div_series(res, T, tlen, Q, qlen, num, prec);
}
/* ((z-1/2) + t) * log(z+t) */
_arb_poly_log_cpx_series(T, z, num, prec);
arb_one(c);
arb_mul_2exp_si(c, c, -1);
arb_sub(c, z, c, prec);
_arb_poly_mullow_cpx(T, T, num, c, num, prec);
/* constant term */
arb_const_log_sqrt2pi(c, prec);
arb_add(T, T, c, prec);
/* subtract (z+t) */
arb_sub(T, T, z, prec);
if (num > 1)
arb_sub_ui(T + 1, T + 1, 1, prec);
_arb_vec_add(res, res, T, num, prec);
_arb_vec_add_error_mag_vec(res, err, num);
_arb_vec_clear(T, num);
_arb_vec_clear(Q, num);
_mag_vec_clear(err, num);
arb_clear(c);
}
void
_arb_poly_gamma_series(arb_ptr res, arb_srcptr h, long hlen, long len, long prec)
{
int reflect;
long i, rflen, r, n, wp;
arb_ptr t, u, v;
arb_struct f[2];
hlen = FLINT_MIN(hlen, len);
wp = prec + FLINT_BIT_COUNT(prec);
t = _arb_vec_init(len);
u = _arb_vec_init(len);
v = _arb_vec_init(len);
arb_init(f);
arb_init(f + 1);
/* use zeta values at small integers */
if (arb_is_int(h) && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0))
{
r = arf_get_si(arb_midref(h), FMPR_RND_DOWN);
if (r <= 0)
{
_arb_vec_indeterminate(v, len);
}
else if (r == 1)
{
_arb_poly_lgamma_series_at_one(u, len, wp);
_arb_poly_exp_series(v, u, len, len, wp);
}
else
{
_arb_poly_lgamma_series_at_one(u, len, wp);
_arb_poly_exp_series(t, u, len, len, wp);
arb_one(f);
arb_one(f + 1);
rflen = FLINT_MIN(len, r);
_arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r - 1, rflen, wp);
_arb_poly_mullow(v, t, len, u, rflen, len, wp);
}
}
else
{
/* otherwise use Stirling series */
arb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);
/* gamma(h) = (rf(1-h, r) * pi) / (gamma(1-h+r) sin(pi h)), h = h0 + t*/
if (reflect)
{
/* u = 1/gamma(r+1-h) */
arb_sub_ui(f, h, r + 1, wp);
arb_neg(f, f);
_arb_poly_gamma_stirling_eval(t, f, n, len, wp);
_arb_vec_neg(t, t, len);
_arb_poly_exp_series(u, t, len, len, wp);
for (i = 1; i < len; i += 2)
arb_neg(u + i, u + i);
/* v = 1/sin(pi x) */
arb_const_pi(f + 1, wp);
arb_mul(f, h, f + 1, wp);
_arb_poly_sin_series(t, f, 2, len, wp);
_arb_poly_inv_series(v, t, len, len, wp);
_arb_poly_mullow(t, u, len, v, len, len, wp);
/* rf(1-h,r) * pi */
if (r == 0)
{
rflen = 1;
arb_const_pi(u, wp);
}
else
{
arb_sub_ui(f, h, 1, wp);
arb_neg(f, f);
arb_set_si(f + 1, -1);
rflen = FLINT_MIN(len, r + 1);
_arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r, rflen, wp);
arb_const_pi(v, wp);
_arb_vec_scalar_mul(u, u, rflen, v, wp);
}
/* multiply by rising factorial */
_arb_poly_mullow(v, t, len, u, rflen, len, wp);
}
else
{
/* gamma(h) = gamma(h+r) / rf(h,r) */
if (r == 0)
{
arb_add_ui(f, h, r, wp);
_arb_poly_gamma_stirling_eval(t, f, n, len, wp);
_arb_poly_exp_series(v, t, len, len, wp);
}
else
{
/* TODO: div_series may be better (once it has a good basecase),
if the rising factorial is short */
arb_set(f, h);
arb_one(f + 1);
rflen = FLINT_MIN(len, r + 1);
_arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r, rflen, wp);
_arb_poly_inv_series(t, u, rflen, len, wp);
arb_add_ui(f, h, r, wp);
_arb_poly_gamma_stirling_eval(v, f, n, len, wp);
_arb_poly_exp_series(u, v, len, len, wp);
_arb_poly_mullow(v, u, len, t, len, len, wp);
}
}
}
/* compose with nonconstant part */
arb_zero(t);
_arb_vec_set(t + 1, h + 1, hlen - 1);
_arb_poly_compose_series(res, v, len, t, hlen, len, prec);
arb_clear(f);
arb_clear(f + 1);
_arb_vec_clear(t, len);
_arb_vec_clear(u, len);
_arb_vec_clear(v, len);
}
void
arb_poly_gamma_series(arb_poly_t res, const arb_poly_t f, long n, long prec)
{
arb_poly_fit_length(res, n);
if (f->length == 0 || n == 0)
_arb_vec_indeterminate(res->coeffs, n);
else
_arb_poly_gamma_series(res->coeffs, f->coeffs, f->length, n, prec);
_arb_poly_set_length(res, n);
_arb_poly_normalise(res);
}

137
arb_poly/lgamma_series.c Normal file
View file

@ -0,0 +1,137 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
#include "gamma.h"
#include "zeta.h"
long arf_get_si(const arf_t x, arf_rnd_t rnd);
void _arb_poly_lgamma_series_at_one(arb_ptr u, long len, long prec);
void arb_gamma_stirling_choose_param(int * reflect, long * r, long * n,
const arb_t x, int use_reflect, int digamma, long prec);
void _arb_poly_gamma_stirling_eval(arb_ptr res, const arb_t z, long n, long num, long prec);
static __inline__ void
_log_rising_ui_series(arb_ptr t, const arb_t x, long r, long len, long prec)
{
arb_struct f[2];
long rflen;
arb_init(f);
arb_init(f + 1);
arb_set(f, x);
arb_one(f + 1);
rflen = FLINT_MIN(len, r + 1);
_arb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, prec);
_arb_poly_log_series(t, t, rflen, len, prec);
arb_clear(f);
arb_clear(f + 1);
}
void
_arb_poly_lgamma_series(arb_ptr res, arb_srcptr h, long hlen, long len, long prec)
{
int reflect;
long r, n, wp;
arb_t zr;
arb_ptr t, u;
hlen = FLINT_MIN(hlen, len);
wp = prec + FLINT_BIT_COUNT(prec);
t = _arb_vec_init(len);
u = _arb_vec_init(len);
arb_init(zr);
/* use zeta values at small integers */
if (arb_is_int(h) && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0))
{
r = arf_get_si(arb_midref(h), FMPR_RND_DOWN);
if (r <= 0)
{
_arb_vec_indeterminate(res, len);
}
else
{
_arb_poly_lgamma_series_at_one(u, len, wp);
if (r != 1)
{
arb_one(zr);
_log_rising_ui_series(t, zr, r - 1, len, wp);
_arb_vec_add(u, u, t, len, wp);
}
}
}
else if (len <= 2)
{
arb_lgamma(u, h, wp);
if (len == 2)
arb_digamma(u + 1, h, wp);
}
else
{
/* otherwise use Stirling series */
arb_gamma_stirling_choose_param(&reflect, &r, &n, h, 0, 0, wp);
arb_add_ui(zr, h, r, wp);
_arb_poly_gamma_stirling_eval(u, zr, n, len, wp);
if (r != 0)
{
_log_rising_ui_series(t, h, r, len, wp);
_arb_vec_sub(u, u, t, len, wp);
}
}
/* compose with nonconstant part */
arb_zero(t);
_arb_vec_set(t + 1, h + 1, hlen - 1);
_arb_poly_compose_series(res, u, len, t, hlen, len, prec);
arb_clear(zr);
_arb_vec_clear(t, len);
_arb_vec_clear(u, len);
}
void
arb_poly_lgamma_series(arb_poly_t res, const arb_poly_t f, long n, long prec)
{
arb_poly_fit_length(res, n);
if (f->length == 0 || n == 0)
_arb_vec_indeterminate(res->coeffs, n);
else
_arb_poly_lgamma_series(res->coeffs, f->coeffs, f->length, n, prec);
_arb_poly_set_length(res, n);
_arb_poly_normalise(res);
}

190
arb_poly/rgamma_series.c Normal file
View file

@ -0,0 +1,190 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
#include "gamma.h"
#include "zeta.h"
long arf_get_si(const arf_t x, arf_rnd_t rnd);
void _arb_poly_lgamma_series_at_one(arb_ptr u, long len, long prec);
void arb_gamma_stirling_choose_param(int * reflect, long * r, long * n,
const arb_t x, int use_reflect, int digamma, long prec);
void _arb_poly_gamma_stirling_eval(arb_ptr res, const arb_t z, long n, long num, long prec);
void
_arb_poly_rgamma_series(arb_ptr res, arb_srcptr h, long hlen, long len, long prec)
{
int reflect;
long i, rflen, r, n, wp;
arb_ptr t, u, v;
arb_struct f[2];
hlen = FLINT_MIN(hlen, len);
wp = prec + FLINT_BIT_COUNT(prec);
t = _arb_vec_init(len);
u = _arb_vec_init(len);
v = _arb_vec_init(len);
arb_init(f);
arb_init(f + 1);
/* use zeta values at small integers */
if (arb_is_int(h) && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0))
{
r = arf_get_si(arb_midref(h), FMPR_RND_DOWN);
_arb_poly_lgamma_series_at_one(u, len, wp);
_arb_vec_neg(u, u, len);
_arb_poly_exp_series(t, u, len, len, wp);
if (r == 1)
{
_arb_vec_swap(v, t, len);
}
else if (r <= 0)
{
arb_set(f, h);
arb_one(f + 1);
rflen = FLINT_MIN(len, 2 - r);
_arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), 1 - r, rflen, wp);
_arb_poly_mullow(v, t, len, u, rflen, len, wp);
}
else
{
arb_one(f);
arb_one(f + 1);
rflen = FLINT_MIN(len, r);
_arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r - 1, rflen, wp);
/* TODO: use div_series? */
_arb_poly_inv_series(u, v, rflen, len, wp);
_arb_poly_mullow(v, t, len, u, len, len, wp);
}
}
else
{
/* otherwise use Stirling series */
arb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);
/* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/
if (reflect)
{
/* u = gamma(r+1-h) */
arb_sub_ui(f, h, r + 1, wp);
arb_neg(f, f);
_arb_poly_gamma_stirling_eval(t, f, n, len, wp);
_arb_poly_exp_series(u, t, len, len, wp);
for (i = 1; i < len; i += 2)
arb_neg(u + i, u + i);
/* v = sin(pi x) */
arb_const_pi(f + 1, wp);
arb_mul(f, h, f + 1, wp);
_arb_poly_sin_series(v, f, 2, len, wp);
_arb_poly_mullow(t, u, len, v, len, len, wp);
/* rf(1-h,r) * pi */
if (r == 0)
{
arb_const_pi(u, wp);
_arb_vec_scalar_div(v, t, len, u, wp);
}
else
{
arb_sub_ui(f, h, 1, wp);
arb_neg(f, f);
arb_set_si(f + 1, -1);
rflen = FLINT_MIN(len, r + 1);
_arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp);
arb_const_pi(u, wp);
_arb_vec_scalar_mul(v, v, rflen, u, wp);
/* divide by rising factorial */
/* TODO: might better to use div_series, when it has a good basecase */
_arb_poly_inv_series(u, v, rflen, len, wp);
_arb_poly_mullow(v, t, len, u, len, len, wp);
}
}
else
{
/* rgamma(h) = rgamma(h+r) rf(h,r) */
if (r == 0)
{
arb_add_ui(f, h, r, wp);
_arb_poly_gamma_stirling_eval(t, f, n, len, wp);
_arb_vec_neg(t, t, len);
_arb_poly_exp_series(v, t, len, len, wp);
}
else
{
arb_set(f, h);
arb_one(f + 1);
rflen = FLINT_MIN(len, r + 1);
_arb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp);
arb_add_ui(f, h, r, wp);
_arb_poly_gamma_stirling_eval(v, f, n, len, wp);
_arb_vec_neg(v, v, len);
_arb_poly_exp_series(u, v, len, len, wp);
_arb_poly_mullow(v, u, len, t, rflen, len, wp);
}
}
}
/* compose with nonconstant part */
arb_zero(t);
_arb_vec_set(t + 1, h + 1, hlen - 1);
_arb_poly_compose_series(res, v, len, t, hlen, len, prec);
arb_clear(f);
arb_clear(f + 1);
_arb_vec_clear(t, len);
_arb_vec_clear(u, len);
_arb_vec_clear(v, len);
}
void
arb_poly_rgamma_series(arb_poly_t res, const arb_poly_t f, long n, long prec)
{
if (f->length == 0 || n == 0)
{
arb_poly_zero(res);
}
else
{
arb_poly_fit_length(res, n);
_arb_poly_rgamma_series(res->coeffs, f->coeffs, f->length, n, prec);
_arb_poly_set_length(res, n);
_arb_poly_normalise(res);
}
}

119
arb_poly/rising_ui_series.c Normal file
View file

@ -0,0 +1,119 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012, 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
static void
_arb_poly_rising_ui_series_bsplit(arb_ptr res,
arb_srcptr f, long flen, ulong a, ulong b,
long trunc, long prec)
{
flen = FLINT_MIN(flen, trunc);
if (b - a == 1)
{
arb_add_ui(res, f, a, prec);
_arb_vec_set(res + 1, f + 1, flen - 1);
}
else
{
arb_ptr L, R;
long len1, len2;
long m = a + (b - a) / 2;
len1 = poly_pow_length(flen, m - a, trunc);
len2 = poly_pow_length(flen, b - m, trunc);
L = _arb_vec_init(len1 + len2);
R = L + len1;
_arb_poly_rising_ui_series_bsplit(L, f, flen, a, m, trunc, prec);
_arb_poly_rising_ui_series_bsplit(R, f, flen, m, b, trunc, prec);
_arb_poly_mullow(res, L, len1, R, len2,
FLINT_MIN(trunc, len1 + len2 - 1), prec);
_arb_vec_clear(L, len1 + len2);
}
}
void
_arb_poly_rising_ui_series(arb_ptr res,
arb_srcptr f, long flen, ulong r,
long trunc, long prec)
{
if (trunc == 1 || flen == 1)
{
arb_rising_ui(res, f, r, prec);
_arb_vec_zero(res + 1, trunc - 1);
}
else if (trunc == 2)
{
arb_rising2_ui(res, res + 1, f, r, prec);
arb_mul(res + 1, res + 1, f + 1, prec);
}
else
{
_arb_poly_rising_ui_series_bsplit(res, f, flen, 0, r, trunc, prec);
}
}
void
arb_poly_rising_ui_series(arb_poly_t res, const arb_poly_t f, ulong r, long trunc, long prec)
{
long len;
if (f->length == 0 && r != 0)
{
arb_poly_zero(res);
return;
}
if (r == 0)
{
arb_poly_one(res);
return;
}
len = poly_pow_length(f->length, r, trunc);
if (f == res)
{
arb_poly_t tmp;
arb_poly_init(tmp);
arb_poly_rising_ui_series(tmp, f, r, len, prec);
arb_poly_swap(tmp, res);
arb_poly_clear(tmp);
}
else
{
arb_poly_fit_length(res, len);
_arb_poly_rising_ui_series(res->coeffs, f->coeffs, f->length, r, len, prec);
_arb_poly_set_length(res, len);
_arb_poly_normalise(res);
}
}

View file

@ -0,0 +1,121 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012, 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
int main()
{
long iter;
flint_rand_t state;
printf("gamma_series....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 2000; iter++)
{
long m, n1, n2, qbits, rbits1, rbits2, rbits3;
fmpq_poly_t A;
arb_poly_t a, b, c, d;
qbits = 2 + n_randint(state, 200);
rbits1 = 2 + n_randint(state, 400);
rbits2 = 2 + n_randint(state, 400);
rbits3 = 2 + n_randint(state, 400);
m = 1 + n_randint(state, 25);
n1 = 1 + n_randint(state, 25);
n2 = 1 + n_randint(state, 25);
fmpq_poly_init(A);
arb_poly_init(a);
arb_poly_init(b);
arb_poly_init(c);
arb_poly_init(d);
fmpq_poly_randtest_not_zero(A, state, m, qbits);
arb_poly_set_fmpq_poly(a, A, rbits1);
arb_poly_gamma_series(b, a, n1, rbits2);
arb_poly_gamma_series(c, a, n2, rbits3);
arb_poly_set(d, b);
arb_poly_truncate(d, FLINT_MIN(n1, n2));
arb_poly_truncate(c, FLINT_MIN(n1, n2));
if (!arb_poly_overlaps(c, d))
{
printf("FAIL\n\n");
printf("n1 = %ld, n2 = %ld, bits2 = %ld, bits3 = %ld\n", n1, n2, rbits2, rbits3);
printf("A = "); fmpq_poly_print(A); printf("\n\n");
printf("a = "); arb_poly_printd(a, 15); printf("\n\n");
printf("b = "); arb_poly_printd(b, 15); printf("\n\n");
printf("c = "); arb_poly_printd(c, 15); printf("\n\n");
abort();
}
/* check gamma(a) * a = gamma(a+1) */
arb_poly_mullow(c, b, a, n1, rbits2);
arb_poly_set(d, a);
arb_add_ui(d->coeffs, d->coeffs, 1, rbits2);
arb_poly_gamma_series(d, d, n1, rbits2);
if (!arb_poly_overlaps(c, d))
{
printf("FAIL (functional equation, n1 = %ld)\n\n", n1);
printf("A = "); fmpq_poly_print(A); printf("\n\n");
printf("a = "); arb_poly_printd(a, 15); printf("\n\n");
printf("b = "); arb_poly_printd(b, 15); printf("\n\n");
printf("c = "); arb_poly_printd(c, 15); printf("\n\n");
printf("d = "); arb_poly_printd(d, 15); printf("\n\n");
abort();
}
arb_poly_gamma_series(a, a, n1, rbits2);
if (!arb_poly_overlaps(a, b))
{
printf("FAIL (aliasing)\n\n");
abort();
}
fmpq_poly_clear(A);
arb_poly_clear(a);
arb_poly_clear(b);
arb_poly_clear(c);
arb_poly_clear(d);
}
flint_randclear(state);
flint_cleanup();
printf("PASS\n");
return EXIT_SUCCESS;
}

View file

@ -0,0 +1,123 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012, 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
int main()
{
long iter;
flint_rand_t state;
printf("lgamma_series....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 1000; iter++)
{
long m, n1, n2, qbits, rbits1, rbits2, rbits3;
fmpq_poly_t A;
arb_poly_t a, b, c, d;
qbits = 2 + n_randint(state, 200);
rbits1 = 2 + n_randint(state, 400);
rbits2 = 2 + n_randint(state, 400);
rbits3 = 2 + n_randint(state, 400);
m = 1 + n_randint(state, 30);
n1 = 1 + n_randint(state, 30);
n2 = 1 + n_randint(state, 30);
fmpq_poly_init(A);
arb_poly_init(a);
arb_poly_init(b);
arb_poly_init(c);
arb_poly_init(d);
fmpq_poly_randtest_not_zero(A, state, m, qbits);
fmpz_abs(A->coeffs, A->coeffs);
arb_poly_set_fmpq_poly(a, A, rbits1);
arb_poly_lgamma_series(b, a, n1, rbits2);
arb_poly_lgamma_series(c, a, n2, rbits3);
arb_poly_set(d, b);
arb_poly_truncate(d, FLINT_MIN(n1, n2));
arb_poly_truncate(c, FLINT_MIN(n1, n2));
if (!arb_poly_overlaps(c, d))
{
printf("FAIL\n\n");
printf("n1 = %ld, n2 = %ld, bits2 = %ld, bits3 = %ld\n", n1, n2, rbits2, rbits3);
printf("A = "); fmpq_poly_print(A); printf("\n\n");
printf("a = "); arb_poly_printd(a, 15); printf("\n\n");
printf("b = "); arb_poly_printd(b, 15); printf("\n\n");
printf("c = "); arb_poly_printd(c, 15); printf("\n\n");
abort();
}
/* check loggamma(a) + log(a) = loggamma(a+1) */
arb_poly_log_series(c, a, n1, rbits2);
arb_poly_add(c, b, c, rbits2);
arb_poly_set(d, a);
arb_add_ui(d->coeffs, d->coeffs, 1, rbits2);
arb_poly_lgamma_series(d, d, n1, rbits2);
if (!arb_poly_overlaps(c, d))
{
printf("FAIL (functional equation)\n\n");
printf("A = "); fmpq_poly_print(A); printf("\n\n");
printf("a = "); arb_poly_printd(a, 15); printf("\n\n");
printf("b = "); arb_poly_printd(b, 15); printf("\n\n");
printf("c = "); arb_poly_printd(c, 15); printf("\n\n");
printf("d = "); arb_poly_printd(d, 15); printf("\n\n");
abort();
}
arb_poly_lgamma_series(a, a, n1, rbits2);
if (!arb_poly_overlaps(a, b))
{
printf("FAIL (aliasing)\n\n");
abort();
}
fmpq_poly_clear(A);
arb_poly_clear(a);
arb_poly_clear(b);
arb_poly_clear(c);
arb_poly_clear(d);
}
flint_randclear(state);
flint_cleanup();
printf("PASS\n");
return EXIT_SUCCESS;
}

View file

@ -0,0 +1,120 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012, 2013 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
int main()
{
long iter;
flint_rand_t state;
printf("rgamma_series....");
fflush(stdout);
flint_randinit(state);
for (iter = 0; iter < 2000; iter++)
{
long m, n1, n2, qbits, rbits1, rbits2, rbits3;
fmpq_poly_t A;
arb_poly_t a, b, c, d;
qbits = 2 + n_randint(state, 200);
rbits1 = 2 + n_randint(state, 400);
rbits2 = 2 + n_randint(state, 400);
rbits3 = 2 + n_randint(state, 400);
m = 1 + n_randint(state, 30);
n1 = 1 + n_randint(state, 30);
n2 = 1 + n_randint(state, 30);
fmpq_poly_init(A);
arb_poly_init(a);
arb_poly_init(b);
arb_poly_init(c);
arb_poly_init(d);
fmpq_poly_randtest_not_zero(A, state, m, qbits);
arb_poly_set_fmpq_poly(a, A, rbits1);
arb_poly_rgamma_series(b, a, n1, rbits2);
arb_poly_rgamma_series(c, a, n2, rbits3);
arb_poly_set(d, b);
arb_poly_truncate(d, FLINT_MIN(n1, n2));
arb_poly_truncate(c, FLINT_MIN(n1, n2));
if (!arb_poly_overlaps(c, d))
{
printf("FAIL\n\n");
printf("n1 = %ld, n2 = %ld, bits2 = %ld, bits3 = %ld\n", n1, n2, rbits2, rbits3);
printf("A = "); fmpq_poly_print(A); printf("\n\n");
printf("a = "); arb_poly_printd(a, 15); printf("\n\n");
printf("b = "); arb_poly_printd(b, 15); printf("\n\n");
printf("c = "); arb_poly_printd(c, 15); printf("\n\n");
abort();
}
/* check rgamma(a) = a gamma(a+1) */
arb_poly_set(d, a);
arb_add_ui(d->coeffs, d->coeffs, 1, rbits2);
arb_poly_rgamma_series(d, d, n1, rbits2);
arb_poly_mullow(c, d, a, n1, rbits2);
if (!arb_poly_overlaps(b, c))
{
printf("FAIL (functional equation, n1 = %ld)\n\n", n1);
printf("A = "); fmpq_poly_print(A); printf("\n\n");
printf("a = "); arb_poly_printd(a, 15); printf("\n\n");
printf("b = "); arb_poly_printd(b, 15); printf("\n\n");
printf("c = "); arb_poly_printd(c, 15); printf("\n\n");
printf("d = "); arb_poly_printd(d, 15); printf("\n\n");
abort();
}
arb_poly_rgamma_series(a, a, n1, rbits2);
if (!arb_poly_overlaps(a, b))
{
printf("FAIL (aliasing)\n\n");
abort();
}
fmpq_poly_clear(A);
arb_poly_clear(a);
arb_poly_clear(b);
arb_poly_clear(c);
arb_poly_clear(d);
}
flint_randclear(state);
flint_cleanup();
printf("PASS\n");
return EXIT_SUCCESS;
}

View file

@ -0,0 +1,128 @@
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include "arb_poly.h"
int main()
{
long iter;
flint_rand_t state;
printf("rising_ui_series....");
fflush(stdout);
flint_randinit(state);
/* check rf(f, a) * rf(f + a, b) = rf(f, a + b) */
for (iter = 0; iter < 1000; iter++)
{
long bits, trunc;
ulong a, b;
arb_poly_t f, g, h1, h2, h1h2, h3;
bits = 2 + n_randint(state, 200);
trunc = 1 + n_randint(state, 20);
a = n_randint(state, 10);
b = n_randint(state, 10);
arb_poly_init(f);
arb_poly_init(g);
arb_poly_init(h1);
arb_poly_init(h2);
arb_poly_init(h1h2);
arb_poly_init(h3);
arb_poly_randtest(f, state, 1 + n_randint(state, 20), bits, 4);
arb_poly_set(g, f);
/* g = f + 1 */
if (g->length == 0)
{
arb_poly_fit_length(g, 1);
arb_set_ui(g->coeffs, a);
_arb_poly_set_length(g, 1);
_arb_poly_normalise(g);
}
else
{
arb_add_ui(g->coeffs, g->coeffs, a, bits);
_arb_poly_normalise(g);
}
arb_poly_rising_ui_series(h1, f, a, trunc, bits);
arb_poly_rising_ui_series(h2, g, b, trunc, bits);
arb_poly_rising_ui_series(h3, f, a + b, trunc, bits);
arb_poly_mullow(h1h2, h1, h2, trunc, bits);
if (!arb_poly_overlaps(h1h2, h3))
{
printf("FAIL\n\n");
printf("bits = %ld\n", bits);
printf("trunc = %ld\n", trunc);
printf("a = %lu\n", a);
printf("b = %lu\n", a);
printf("f = "); arb_poly_printd(f, 15); printf("\n\n");
printf("g = "); arb_poly_printd(g, 15); printf("\n\n");
printf("h1 = "); arb_poly_printd(h1, 15); printf("\n\n");
printf("h2 = "); arb_poly_printd(h2, 15); printf("\n\n");
printf("h1h2 = "); arb_poly_printd(h1h2, 15); printf("\n\n");
printf("h3 = "); arb_poly_printd(h3, 15); printf("\n\n");
abort();
}
arb_poly_rising_ui_series(f, f, a, trunc, bits);
if (!arb_poly_equal(f, h1))
{
printf("FAIL (aliasing)\n\n");
printf("bits = %ld\n", bits);
printf("trunc = %ld\n", trunc);
printf("a = %lu\n", a);
printf("b = %lu\n", a);
printf("f = "); arb_poly_printd(f, 15); printf("\n\n");
printf("h1 = "); arb_poly_printd(h1, 15); printf("\n\n");
abort();
}
arb_poly_clear(f);
arb_poly_clear(g);
arb_poly_clear(h1);
arb_poly_clear(h2);
arb_poly_clear(h1h2);
arb_poly_clear(h3);
}
flint_randclear(state);
flint_cleanup();
printf("PASS\n");
return EXIT_SUCCESS;
}

View file

@ -439,13 +439,13 @@ Rising factorials
Rising factorials
-------------------------------------------------------------------------------
.. function:: void arb_rising_ui_bs(arb_t z, const arb_t x, ulong n, long prec)
.. function:: void acb_rising_ui_bs(acb_t z, const acb_t x, ulong n, long prec)
.. function:: void arb_rising_ui_rs(arb_t z, const arb_t x, ulong n, ulong step, long prec)
.. function:: void acb_rising_ui_rs(acb_t z, const acb_t x, ulong n, ulong step, long prec)
.. function:: void arb_rising_ui_rec(arb_t z, const arb_t x, ulong n, long prec)
.. function:: void acb_rising_ui_rec(acb_t z, const acb_t x, ulong n, long prec)
.. function:: void arb_rising_ui(arb_t z, const arb_t x, ulong n, long prec)
.. function:: void acb_rising_ui(acb_t z, const acb_t x, ulong n, long prec)
Computes the rising factorial `z = x (x+1) (x+2) \cdots (x+n-1)`.

View file

@ -646,6 +646,35 @@ Special functions
The underscore version does not support aliasing, and requires
the lengths to be nonzero.
.. function:: void _acb_poly_gamma_series(acb_ptr res, acb_srcptr h, long hlen, long n, long prec)
.. function:: void acb_poly_gamma_series(acb_poly_t res, const acb_poly_t h, long n, long prec)
.. function:: void _acb_poly_rgamma_series(acb_ptr res, acb_srcptr h, long hlen, long n, long prec)
.. function:: void acb_poly_rgamma_series(acb_poly_t res, const acb_poly_t h, long n, long prec)
.. function:: void _acb_poly_lgamma_series(acb_ptr res, acb_srcptr h, long hlen, long n, long prec)
.. function:: void acb_poly_lgamma_series(acb_poly_t res, const acb_poly_t h, long n, long prec)
Sets *res* to the series expansion of `\Gamma(h(x))`, `1/\Gamma(h(x))`,
or `\log \Gamma(h(x))`, truncated to length *n*.
These functions first generate the Taylor series at the constant
term of *h*, and then call :func:`_acb_poly_compose_series`.
The Taylor coefficients are generated using Stirling's series.
The underscore methods support aliasing of the input and output
arrays, and require that *hlen* and *n* are greater than zero.
.. function:: void _acb_poly_rising_ui_series(acb_ptr res, acb_srcptr f, long flen, ulong r, long trunc, long prec)
.. function:: void acb_poly_rising_ui_series(acb_poly_t res, const acb_poly_t f, ulong r, long trunc, long prec)
Sets *res* to the rising factorial `(f) (f+1) (f+2) \cdots (f+r-1)`, truncated
to length *trunc*. The underscore method assumes that *flen*, *r* and *trunc*
are at least 1, and does not support aliasing. Uses binary splitting.
Root-finding
-------------------------------------------------------------------------------

View file

@ -796,6 +796,38 @@ Powers and special functions
The underscore version does not support aliasing, and requires
the lengths to be nonzero.
.. function:: void _arb_poly_gamma_series(arb_ptr res, arb_srcptr h, long hlen, long n, long prec)
.. function:: void arb_poly_gamma_series(arb_poly_t res, const arb_poly_t h, long n, long prec)
.. function:: void _arb_poly_rgamma_series(arb_ptr res, arb_srcptr h, long hlen, long n, long prec)
.. function:: void arb_poly_rgamma_series(arb_poly_t res, const arb_poly_t h, long n, long prec)
.. function:: void _arb_poly_lgamma_series(arb_ptr res, arb_srcptr h, long hlen, long n, long prec)
.. function:: void arb_poly_lgamma_series(arb_poly_t res, const arb_poly_t h, long n, long prec)
Sets *res* to the series expansion of `\Gamma(h(x))`, `1/\Gamma(h(x))`,
or `\log \Gamma(h(x))`, truncated to length *n*.
These functions first generate the Taylor series at the constant
term of *h*, and then call :func:`_arb_poly_compose_series`.
The Taylor coefficients are generated using the Riemann zeta function
if the constant term of *h* is a small integer,
and with Stirling's series otherwise.
The underscore methods support aliasing of the input and output
arrays, and require that *hlen* and *n* are greater than zero.
.. function:: void _arb_poly_rising_ui_series(arb_ptr res, arb_srcptr f, long flen, ulong r, long trunc, long prec)
.. function:: void arb_poly_rising_ui_series(arb_poly_t res, const arb_poly_t f, ulong r, long trunc, long prec)
Sets *res* to the rising factorial `(f) (f+1) (f+2) \cdots (f+r-1)`, truncated
to length *trunc*. The underscore method assumes that *flen*, *r* and *trunc*
are at least 1, and does not support aliasing. Uses binary splitting.
Root-finding
-------------------------------------------------------------------------------