interpolation derivative for zeros refinement under limited precision

This commit is contained in:
p15-git-acc 2019-08-12 08:55:54 -05:00
parent 97a7fa2448
commit de94163eed
5 changed files with 292 additions and 49 deletions

View file

@ -229,8 +229,8 @@ void acb_dirichlet_platt_c_precomp_init(acb_dirichlet_platt_c_precomp_t pre,
slong sigma, const arb_t h, ulong k, slong prec); slong sigma, const arb_t h, ulong k, slong prec);
void acb_dirichlet_platt_c_precomp_clear(acb_dirichlet_platt_c_precomp_t pre); void acb_dirichlet_platt_c_precomp_clear(acb_dirichlet_platt_c_precomp_t pre);
void acb_dirichlet_platt_c_bound_precomp(arb_t res, void acb_dirichlet_platt_c_bound_precomp(arb_t res,
const acb_dirichlet_platt_c_precomp_t pre, slong sigma, const arb_t t0, const acb_dirichlet_platt_c_precomp_t pre, slong sigma, const arb_t t0,
const arb_t h, slong k, slong prec); const arb_t h, slong k, slong prec);
void acb_dirichlet_platt_c_bound(arb_t res, void acb_dirichlet_platt_c_bound(arb_t res,
slong sigma, const arb_t t0, const arb_t h, slong k, slong prec); slong sigma, const arb_t t0, const arb_t h, slong k, slong prec);
@ -249,15 +249,15 @@ void acb_dirichlet_platt_i_bound(arb_t res,
/* Platt Gaussian-windowed Whittaker-Shannon interpolation */ /* Platt Gaussian-windowed Whittaker-Shannon interpolation */
void acb_dirichlet_platt_ws_precomp_init(acb_dirichlet_platt_ws_precomp_t pre, void acb_dirichlet_platt_ws_precomp_init(acb_dirichlet_platt_ws_precomp_t pre,
slong A, const arb_t H, slong sigma, slong prec); slong A, const arb_t H, slong sigma, slong prec);
void acb_dirichlet_platt_ws_precomp_clear(acb_dirichlet_platt_ws_precomp_t pre); void acb_dirichlet_platt_ws_precomp_clear(acb_dirichlet_platt_ws_precomp_t pre);
void acb_dirichlet_platt_ws_interpolation_precomp(arb_t res, void acb_dirichlet_platt_ws_interpolation_precomp(arb_t res, arf_t deriv,
const acb_dirichlet_platt_ws_precomp_t pre, const arb_t t0, const acb_dirichlet_platt_ws_precomp_t pre, const arb_t t0,
arb_srcptr p, const fmpz_t T, slong A, slong B, slong Ns_max, arb_srcptr p, const fmpz_t T, slong A, slong B, slong Ns_max,
const arb_t H, slong sigma, slong prec); const arb_t H, slong sigma, slong prec);
void acb_dirichlet_platt_ws_interpolation(arb_t res, const arb_t t0, void acb_dirichlet_platt_ws_interpolation(arb_t res, arf_t deriv,
arb_srcptr p, const fmpz_t T, slong A, slong B, slong Ns_max, const arb_t t0, arb_srcptr p, const fmpz_t T, slong A, slong B,
const arb_t H, slong sigma, slong prec); slong Ns_max, const arb_t H, slong sigma, slong prec);
void acb_dirichlet_platt_bound_C3(arb_t res, const arb_t t0, slong A, void acb_dirichlet_platt_bound_C3(arb_t res, const arb_t t0, slong A,
const arb_t H, slong Ns, slong prec); const arb_t H, slong Ns, slong prec);

View file

@ -82,21 +82,22 @@ platt_ctx_clear(platt_ctx_t ctx)
} }
static void static void
platt_ctx_interpolate(arb_t res, platt_ctx_interpolate(arb_t res, arf_t deriv,
const platt_ctx_t ctx, const arb_t t0, slong prec) const platt_ctx_t ctx, const arb_t t0, slong prec)
{ {
acb_dirichlet_platt_ws_interpolation_precomp(res, &ctx->pre, t0, ctx->p, acb_dirichlet_platt_ws_interpolation_precomp(res, deriv,
&ctx->T, ctx->A, ctx->B, ctx->Ns_max, &ctx->H, ctx->sigma, prec); &ctx->pre, t0, ctx->p, &ctx->T, ctx->A, ctx->B, ctx->Ns_max,
&ctx->H, ctx->sigma, prec);
} }
static void static void
platt_ctx_interpolate_arf(arb_t res, platt_ctx_interpolate_arf(arb_t res, arf_t deriv,
const platt_ctx_t ctx, const arf_t t0, slong prec) const platt_ctx_t ctx, const arf_t t0, slong prec)
{ {
arb_t t; arb_t t;
arb_init(t); arb_init(t);
arb_set_arf(t, t0); arb_set_arf(t, t0);
platt_ctx_interpolate(res, ctx, t, prec); platt_ctx_interpolate(res, deriv, ctx, t, prec);
arb_clear(t); arb_clear(t);
} }
@ -228,7 +229,7 @@ create_non_gram_node(const arf_t t, const platt_ctx_t ctx, slong prec)
zz_node_ptr p = flint_malloc(sizeof(zz_node_struct)); zz_node_ptr p = flint_malloc(sizeof(zz_node_struct));
zz_node_init(p); zz_node_init(p);
arf_set(&p->t, t); arf_set(&p->t, t);
platt_ctx_interpolate_arf(&p->v, ctx, t, prec); platt_ctx_interpolate_arf(&p->v, NULL, ctx, t, prec);
if (arb_contains_zero(&p->v)) if (arb_contains_zero(&p->v))
{ {
zz_node_clear(p); zz_node_clear(p);
@ -258,7 +259,7 @@ create_gram_node(const fmpz_t n, const platt_ctx_t ctx, slong prec)
acb_dirichlet_gram_point(t, n, NULL, NULL, prec + fmpz_sizeinbase(n, 2)); acb_dirichlet_gram_point(t, n, NULL, NULL, prec + fmpz_sizeinbase(n, 2));
acb_set_arb(z, t); acb_set_arb(z, t);
platt_ctx_interpolate(v, ctx, t, prec); platt_ctx_interpolate(v, NULL, ctx, t, prec);
if (!arb_contains_zero(v)) if (!arb_contains_zero(v))
{ {
/* t contains g(n) and does not contain a zero of the f function */ /* t contains g(n) and does not contain a zero of the f function */
@ -1136,10 +1137,10 @@ _refine_local_hardy_z_zero_illinois(arb_t res,
abs_tol = nmag - prec - 4; abs_tol = nmag - prec - 4;
wp = prec + nmag + 8; wp = prec + nmag + 8;
platt_ctx_interpolate_arf(z, ctx, a, wp); platt_ctx_interpolate_arf(z, NULL, ctx, a, wp);
asign = arb_sgn_nonzero(z); asign = arb_sgn_nonzero(z);
arf_set(fa, arb_midref(z)); arf_set(fa, arb_midref(z));
platt_ctx_interpolate_arf(z, ctx, b, wp); platt_ctx_interpolate_arf(z, NULL, ctx, b, wp);
bsign = arb_sgn_nonzero(z); bsign = arb_sgn_nonzero(z);
arf_set(fb, arb_midref(z)); arf_set(fb, arb_midref(z));
@ -1164,22 +1165,90 @@ _refine_local_hardy_z_zero_illinois(arb_t res,
arf_mul(c, c, fa, wp, ARF_RND_NEAR); arf_mul(c, c, fa, wp, ARF_RND_NEAR);
arf_sub(c, a, c, wp, ARF_RND_NEAR); arf_sub(c, a, c, wp, ARF_RND_NEAR);
/* if c is not sandwiched between a and b, improve precision /* if c is not sandwiched between a and b,
and fall back to one bisection step */ fall back to one bisection step */
if (!arf_is_finite(c) || if (!arf_is_finite(c) ||
!((arf_cmp(a, c) < 0 && arf_cmp(c, b) < 0) || !((arf_cmp(a, c) < 0 && arf_cmp(c, b) < 0) ||
(arf_cmp(b, c) < 0 && arf_cmp(c, a) < 0))) (arf_cmp(b, c) < 0 && arf_cmp(c, a) < 0)))
{ {
/* flint_printf("no sandwich (k = %wd)\n", k); */ /* flint_printf("no sandwich (k = %wd)\n", k); */
wp += 32;
arf_add(c, a, b, ARF_PREC_EXACT, ARF_RND_DOWN); arf_add(c, a, b, ARF_PREC_EXACT, ARF_RND_DOWN);
arf_mul_2exp_si(c, c, -1); arf_mul_2exp_si(c, c, -1);
} }
platt_ctx_interpolate_arf(z, ctx, c, wp); platt_ctx_interpolate_arf(z, NULL, ctx, c, wp);
csign = arb_sgn_nonzero(z); csign = arb_sgn_nonzero(z);
/* If the guess is close enough to a zero that the sign
* cannot be determined, then use the derivative to
* make an appropriately small interval around the guess. */
if (!csign) if (!csign)
{
arf_t deriv, aprime, bprime, faprime, fbprime, err, delta;
slong i, aprimesign, bprimesign;
arf_init(deriv);
arf_init(aprime);
arf_init(bprime);
arf_init(faprime);
arf_init(fbprime);
arf_init(err);
arf_init(delta);
arf_set_mag(err, arb_radref(z));
platt_ctx_interpolate_arf(NULL, deriv, ctx, c, wp);
arf_div(delta, err, deriv, wp, ARF_RND_NEAR);
arf_mul_si(delta, delta, 3, wp, ARF_RND_NEAR);
arf_mul_2exp_si(delta, delta, -1);
arf_set(aprime, c);
arf_set(bprime, c);
/* When the context allows the interval endpoints to
* be evaluated to relatively high precision,
* this should not require more than one or two iterations. */
for (i = 0; i < 5; i++)
{
arf_sub(aprime, aprime, delta, wp, ARF_RND_DOWN);
arf_add(bprime, bprime, delta, wp, ARF_RND_UP);
if (arf_cmp(a, b) < 0)
{
if (arf_cmp(aprime, a) < 0)
arf_set(aprime, a);
if (arf_cmp(b, bprime) < 0)
arf_set(bprime, b);
}
else
{
if (arf_cmp(aprime, b) < 0)
arf_set(aprime, b);
if (arf_cmp(a, bprime) < 0)
arf_set(bprime, a);
}
platt_ctx_interpolate_arf(z, NULL, ctx, aprime, wp);
arf_set(faprime, arb_midref(z));
aprimesign = arb_sgn_nonzero(z);
platt_ctx_interpolate_arf(z, NULL, ctx, bprime, wp);
arf_set(fbprime, arb_midref(z));
bprimesign = arb_sgn_nonzero(z);
if (aprimesign && bprimesign && aprimesign != bprimesign)
{
arf_set(a, aprime);
arf_set(b, bprime);
arf_set(fa, faprime);
arf_set(fb, fbprime);
break;
}
}
arf_clear(deriv);
arf_clear(aprime);
arf_clear(bprime);
arf_clear(faprime);
arf_clear(fbprime);
arf_clear(err);
arf_clear(delta);
break; break;
}
arf_set(fc, arb_midref(z)); arf_set(fc, arb_midref(z));
if (csign != bsign) if (csign != bsign)

View file

@ -335,29 +335,27 @@ finish:
arb_clear(rhs); arb_clear(rhs);
} }
/* Does not account for limited resolution and supporting points. */
static void static void
_interpolation_helper(arb_t res, const acb_dirichlet_platt_ws_precomp_t pre, _interpolation_helper_raw(arb_t res,
const arb_t t0, arb_srcptr p, const fmpz_t T, slong A, slong B, const arb_t t0, arb_srcptr p, const fmpz_t T, slong A, slong B,
slong i0, slong Ns, const arb_t H, slong sigma, slong prec) slong i0, slong Ns, const arb_t H, slong prec)
{ {
mag_t m; mag_t m;
arb_t accum1; /* sum of terms where the argument of sinc is small */ arb_t accum1; /* sum of terms where the argument of sinc is small */
arb_t accum2; /* sum of terms where the argument of sinc is large */ arb_t accum2; /* sum of terms where the argument of sinc is large */
arb_t total, dt0, dt, a, b, s, err, pi, g, x, c; arb_t dt0, dt, a, b, s, pi, g, x, c;
slong i; slong i;
slong N = A*B; slong N = A*B;
mag_init(m); mag_init(m);
arb_init(accum1); arb_init(accum1);
arb_init(accum2); arb_init(accum2);
arb_init(total);
arb_init(dt0); arb_init(dt0);
arb_init(dt); arb_init(dt);
arb_init(a); arb_init(a);
arb_init(b); arb_init(b);
arb_init(s); arb_init(s);
arb_init(err);
arb_init(pi); arb_init(pi);
arb_init(g); arb_init(g);
arb_init(x); arb_init(x);
@ -398,31 +396,191 @@ _interpolation_helper(arb_t res, const acb_dirichlet_platt_ws_precomp_t pre,
arb_add(accum2, accum2, b, prec); arb_add(accum2, accum2, b, prec);
} }
} }
arb_set(total, accum1); arb_set(res, accum1);
arb_addmul(total, accum2, c, prec); arb_addmul(res, accum2, c, prec);
acb_dirichlet_platt_bound_C3(err, t0, A, H, Ns, prec);
arb_add_error(total, err);
acb_dirichlet_platt_i_bound_precomp(
err, &pre->pre_i, &pre->pre_c, t0, A, H, sigma, prec);
arb_add_error(total, err);
arb_set(res, total);
mag_clear(m); mag_clear(m);
arb_clear(accum1); arb_clear(accum1);
arb_clear(accum2); arb_clear(accum2);
arb_clear(total);
arb_clear(dt0); arb_clear(dt0);
arb_clear(dt); arb_clear(dt);
arb_clear(a); arb_clear(a);
arb_clear(b); arb_clear(b);
arb_clear(s); arb_clear(s);
arb_clear(err);
arb_clear(pi); arb_clear(pi);
arb_clear(g); arb_clear(g);
arb_clear(x); arb_clear(x);
arb_clear(c); arb_clear(c);
} }
static void
_arb_poly_sinc_pi_series(arb_ptr g, arb_srcptr h, slong hlen, slong n, slong prec)
{
hlen = FLINT_MIN(hlen, n);
if (hlen == 1)
{
arb_sinc_pi(g, h, prec);
_arb_vec_zero(g + 1, n - 1);
}
else
{
arb_t pi;
arb_ptr t, u;
arb_init(pi);
t = _arb_vec_init(n + 1);
u = _arb_vec_init(hlen);
arb_const_pi(pi, prec);
_arb_vec_set(u, h, hlen);
if (arb_is_zero(h))
{
_arb_poly_sin_pi_series(t, u, hlen, n + 1, prec);
_arb_poly_div_series(g, t + 1, n, u + 1, hlen - 1, n, prec);
}
else
{
_arb_poly_sin_pi_series(t, u, hlen, n, prec);
_arb_poly_div_series(g, t, n, u, hlen, n, prec);
}
_arb_vec_scalar_div(g, g, n, pi, prec);
arb_clear(pi);
_arb_vec_clear(t, n + 1);
_arb_vec_clear(u, hlen);
}
}
/* Sets res to the function (a * exp(-(b-h)^2 / c)) * sinc_pi(d*(b-h)))
* of the power series h, for the purpose of computing derivatives
* of the Gaussian-windowed Whittaker-Shannon interpolation.
* Supports aliasing. */
static void
_arb_poly_gwws_series(arb_ptr res, arb_srcptr h, slong hlen,
const arb_t a, const arb_t b, const arb_t c, const arb_t d,
slong len, slong prec)
{
arb_ptr u, u2, v, w;
hlen = FLINT_MIN(hlen, len);
u = _arb_vec_init(hlen);
u2 = _arb_vec_init(len);
v = _arb_vec_init(len);
w = _arb_vec_init(len);
/* u = b-h; u2 = (b-h)^2 */
_arb_vec_neg(u, h, hlen);
arb_add(u, u, b, prec);
_arb_poly_mullow(u2, u, hlen, u, hlen, len, prec);
/* v = exp(-(b-h)^2 / c) */
_arb_vec_scalar_div(v, u2, len, c, prec);
_arb_vec_neg(v, v, len);
_arb_poly_exp_series(v, v, len, len, prec);
/* w = sinc_pi(d*(b-h)) */
_arb_vec_scalar_mul(w, u, hlen, d, prec);
_arb_poly_sinc_pi_series(w, w, hlen, len, prec);
/* res = a * exp(-(b-h)^2 / c)) * sinc_pi(d*(b-h)) */
_arb_poly_mullow(res, v, len, w, len, len, prec);
_arb_vec_scalar_mul(res, res, len, a, prec);
_arb_vec_clear(u, hlen);
_arb_vec_clear(u2, len);
_arb_vec_clear(v, len);
_arb_vec_clear(w, len);
}
/* Does not account for limited resolution and supporting points. */
static void
_interpolation_helper_raw_series(arb_ptr res, arb_srcptr t0, slong t0len,
arb_srcptr p, const fmpz_t T, slong A, slong B, slong i0,
slong Ns, const arb_t H, slong trunc, slong prec)
{
t0len = FLINT_MIN(t0len, trunc);
if (t0len == 1)
{
_interpolation_helper_raw(res, t0, p, T, A, B, i0, Ns, H, prec);
_arb_vec_zero(res + 1, trunc - 1);
}
else
{
arb_ptr h, g, accum;
arb_t b, c, d;
slong N = A*B;
slong i;
arb_init(b);
arb_init(c);
arb_init(d);
h = _arb_vec_init(t0len);
g = _arb_vec_init(trunc);
accum = _arb_vec_init(trunc);
arb_sqr(c, H, prec);
arb_mul_2exp_si(c, c, 1);
arb_set_si(d, A);
_arb_vec_set(h, t0, t0len);
arb_sub_fmpz(h, t0, T, prec + fmpz_clog_ui(T, 2));
for (i = i0; i < i0 + 2*Ns; i++)
{
slong n = i - N/2;
_arb_div_si_si(b, n, A, prec);
_arb_poly_gwws_series(g, h, t0len, p + i, b, c, d, trunc, prec);
_arb_vec_add(accum, accum, g, trunc, prec);
}
_arb_vec_set(res, accum, trunc);
arb_clear(b);
arb_clear(c);
arb_clear(d);
_arb_vec_clear(h, t0len);
_arb_vec_clear(g, trunc);
_arb_vec_clear(accum, trunc);
}
}
static void
_interpolation_deriv_helper(arf_t res, const arb_t t0,
arb_srcptr p, const fmpz_t T, slong A, slong B, slong i0,
slong Ns, const arb_t H, slong prec)
{
arb_ptr t, h;
t = _arb_vec_init(2);
h = _arb_vec_init(2);
arb_set(t+0, t0);
arb_one(t+1);
_interpolation_helper_raw_series(
h, t, 2, p, T, A, B, i0, Ns, H, 2, prec);
arf_set(res, arb_midref(h+1));
_arb_vec_clear(t, 2);
_arb_vec_clear(h, 2);
}
/* Accounts for limited resolution and supporting points. */
static void
_interpolation_helper(arb_t res, const acb_dirichlet_platt_ws_precomp_t pre,
const arb_t t0, arb_srcptr p, const fmpz_t T, slong A, slong B,
slong i0, slong Ns, const arb_t H, slong sigma, slong prec)
{
arb_t total, err;
arb_init(total);
arb_init(err);
_interpolation_helper_raw(
total, t0, p, T, A, B, i0, Ns, H, prec);
acb_dirichlet_platt_bound_C3(err, t0, A, H, Ns, prec);
arb_add_error(total, err);
acb_dirichlet_platt_i_bound_precomp(
err, &pre->pre_i, &pre->pre_c, t0, A, H, sigma, prec);
arb_add_error(total, err);
arb_set(res, total);
arb_clear(total);
arb_clear(err);
}
void void
acb_dirichlet_platt_ws_precomp_init(acb_dirichlet_platt_ws_precomp_t pre, acb_dirichlet_platt_ws_precomp_init(acb_dirichlet_platt_ws_precomp_t pre,
@ -439,7 +597,7 @@ acb_dirichlet_platt_ws_precomp_clear(acb_dirichlet_platt_ws_precomp_t pre)
acb_dirichlet_platt_i_precomp_clear(&pre->pre_i); acb_dirichlet_platt_i_precomp_clear(&pre->pre_i);
} }
void acb_dirichlet_platt_ws_interpolation_precomp(arb_t res, void acb_dirichlet_platt_ws_interpolation_precomp(arb_t res, arf_t deriv,
const acb_dirichlet_platt_ws_precomp_t pre, const arb_t t0, const acb_dirichlet_platt_ws_precomp_t pre, const arb_t t0,
arb_srcptr p, const fmpz_t T, slong A, slong B, slong Ns_max, arb_srcptr p, const fmpz_t T, slong A, slong B, slong Ns_max,
const arb_t H, slong sigma, slong prec) const arb_t H, slong sigma, slong prec)
@ -466,6 +624,10 @@ void acb_dirichlet_platt_ws_interpolation_precomp(arb_t res,
arb_mul_si(dt0A, dt0, A, prec); arb_mul_si(dt0A, dt0, A, prec);
arb_get_lbound_arf(lower_f, dt0A, prec); arb_get_lbound_arf(lower_f, dt0A, prec);
lower_n = arf_get_si(lower_f, ARF_RND_FLOOR); lower_n = arf_get_si(lower_f, ARF_RND_FLOOR);
if (deriv)
{
arf_zero(deriv);
}
/* /*
* More than one iteration is needed only when the set of * More than one iteration is needed only when the set of
@ -483,20 +645,31 @@ void acb_dirichlet_platt_ws_interpolation_precomp(arb_t res,
else else
{ {
slong i0 = N/2 + n - (Ns - 1); slong i0 = N/2 + n - (Ns - 1);
_interpolation_helper( if (res)
x, pre, t0, p, T, A, B, i0, Ns, H, sigma, prec);
if (n == lower_n)
{ {
arb_set(total, x); _interpolation_helper(
x, pre, t0, p, T, A, B, i0, Ns, H, sigma, prec);
if (n == lower_n)
{
arb_set(total, x);
}
else
{
arb_union(total, total, x, prec);
}
} }
else if (deriv)
{ {
arb_union(total, total, x, prec); _interpolation_deriv_helper(
deriv, t0, p, T, A, B, i0, Ns, H, prec);
} }
} }
} }
arb_set(res, total); if (res)
{
arb_set(res, total);
}
arb_clear(x); arb_clear(x);
arb_clear(dt0); arb_clear(dt0);
@ -507,13 +680,13 @@ void acb_dirichlet_platt_ws_interpolation_precomp(arb_t res,
} }
void void
acb_dirichlet_platt_ws_interpolation(arb_t res, const arb_t t0, acb_dirichlet_platt_ws_interpolation(arb_t res, arf_t deriv, const arb_t t0,
arb_srcptr p, const fmpz_t T, slong A, slong B, arb_srcptr p, const fmpz_t T, slong A, slong B,
slong Ns_max, const arb_t H, slong sigma, slong prec) slong Ns_max, const arb_t H, slong sigma, slong prec)
{ {
acb_dirichlet_platt_ws_precomp_t pre; acb_dirichlet_platt_ws_precomp_t pre;
acb_dirichlet_platt_ws_precomp_init(pre, A, H, sigma, prec); acb_dirichlet_platt_ws_precomp_init(pre, A, H, sigma, prec);
acb_dirichlet_platt_ws_interpolation_precomp( acb_dirichlet_platt_ws_interpolation_precomp(
res, pre, t0, p, T, A, B, Ns_max, H, sigma, prec); res, deriv, pre, t0, p, T, A, B, Ns_max, H, sigma, prec);
acb_dirichlet_platt_ws_precomp_clear(pre); acb_dirichlet_platt_ws_precomp_clear(pre);
} }

View file

@ -65,7 +65,7 @@ int main()
arb_abs(H, H); arb_abs(H, H);
acb_dirichlet_platt_scaled_lambda(expected, t0, prec); acb_dirichlet_platt_scaled_lambda(expected, t0, prec);
acb_dirichlet_platt_ws_interpolation(observed, t0, vec, acb_dirichlet_platt_ws_interpolation(observed, NULL, t0, vec,
T, A, B, Ns_max, H, sigma, prec); T, A, B, Ns_max, H, sigma, prec);
if (!arb_overlaps(expected, observed)) if (!arb_overlaps(expected, observed))

View file

@ -766,11 +766,12 @@ and formulas described by David J. Platt in [Pla2017]_.
discrete Fourier transforms, and it requires the four additional tuning discrete Fourier transforms, and it requires the four additional tuning
parameters *h*, *J*, *K*, and *sigma*. parameters *h*, *J*, *K*, and *sigma*.
.. function:: void acb_dirichlet_platt_ws_interpolation(arb_t res, const arb_t t0, arb_srcptr p, const fmpz_t T, slong A, slong B, slong Ns_max, const arb_t H, slong sigma, slong prec) .. function:: void acb_dirichlet_platt_ws_interpolation(arb_t res, arf_t deriv, const arb_t t0, arb_srcptr p, const fmpz_t T, slong A, slong B, slong Ns_max, const arb_t H, slong sigma, slong prec)
Compute :func:`acb_dirichlet_platt_scaled_lambda` at *t0* by Compute :func:`acb_dirichlet_platt_scaled_lambda` at *t0* by
Gaussian-windowed Whittaker-Shannon interpolation of points evaluated by Gaussian-windowed Whittaker-Shannon interpolation of points evaluated by
:func:`acb_dirichlet_platt_scaled_lambda_vec`. :func:`acb_dirichlet_platt_scaled_lambda_vec`. The derivative is
also approximated if the output parameter *deriv* is not *NULL*.
*Ns_max* defines the maximum number of supporting points to be used in *Ns_max* defines the maximum number of supporting points to be used in
the interpolation on either side of *t0*. *H* is the standard deviation the interpolation on either side of *t0*. *H* is the standard deviation
of the Gaussian window centered on *t0* to be applied before the of the Gaussian window centered on *t0* to be applied before the