mirror of
https://github.com/vale981/arb
synced 2025-03-04 17:01:40 -05:00
Carlson elliptic integral of the second kind
This commit is contained in:
parent
1ff095f89c
commit
30ef271aa2
4 changed files with 238 additions and 2 deletions
|
@ -23,6 +23,8 @@ void acb_elliptic_rf(acb_t res, const acb_t x, const acb_t y, const acb_t z, int
|
|||
|
||||
void acb_elliptic_rj(acb_t res, const acb_t x, const acb_t y, const acb_t z, const acb_t p, int flags, slong prec);
|
||||
|
||||
void acb_elliptic_rg(acb_t res, const acb_t x, const acb_t y, const acb_t z, int flags, slong prec);
|
||||
|
||||
void acb_elliptic_rc1(acb_t res, const acb_t x, slong prec);
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
85
acb_elliptic/rg.c
Normal file
85
acb_elliptic/rg.c
Normal file
|
@ -0,0 +1,85 @@
|
|||
/*
|
||||
Copyright (C) 2017 Fredrik Johansson
|
||||
|
||||
This file is part of Arb.
|
||||
|
||||
Arb is free software: you can redistribute it and/or modify it under
|
||||
the terms of the GNU Lesser General Public License (LGPL) as published
|
||||
by the Free Software Foundation; either version 2.1 of the License, or
|
||||
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "acb_elliptic.h"
|
||||
|
||||
void
|
||||
_acb_elliptic_rg(acb_t res, const acb_t x, const acb_t y, const acb_t z,
|
||||
int flags, slong prec)
|
||||
{
|
||||
acb_t a, b, c, t;
|
||||
slong wp;
|
||||
|
||||
wp = prec + 10;
|
||||
|
||||
acb_init(a);
|
||||
acb_init(b);
|
||||
acb_init(c);
|
||||
acb_init(t);
|
||||
|
||||
acb_elliptic_rf(a, x, y, z, 0, wp);
|
||||
acb_mul(a, a, z, wp);
|
||||
|
||||
acb_elliptic_rj(b, x, y, z, z, 0, wp);
|
||||
acb_sub(c, x, z, wp);
|
||||
acb_mul(b, b, c, wp);
|
||||
acb_sub(c, z, y, wp);
|
||||
acb_mul(b, b, c, wp);
|
||||
acb_div_ui(b, b, 3, wp);
|
||||
|
||||
acb_sqrt(c, x, wp);
|
||||
acb_sqrt(t, y, wp);
|
||||
acb_mul(c, c, t, wp);
|
||||
acb_rsqrt(t, z, wp);
|
||||
acb_mul(c, c, t, wp);
|
||||
|
||||
acb_add(res, a, b, wp);
|
||||
acb_add(res, res, c, prec);
|
||||
acb_mul_2exp_si(res, res, -1);
|
||||
|
||||
acb_clear(a);
|
||||
acb_clear(b);
|
||||
acb_clear(c);
|
||||
acb_clear(t);
|
||||
}
|
||||
|
||||
void
|
||||
acb_elliptic_rg(acb_t res, const acb_t x, const acb_t y, const acb_t z,
|
||||
int flags, slong prec)
|
||||
{
|
||||
if (acb_is_zero(x) && acb_is_zero(y))
|
||||
{
|
||||
acb_sqrt(res, z, prec);
|
||||
acb_mul_2exp_si(res, res, -1);
|
||||
}
|
||||
else if (acb_is_zero(x) && acb_is_zero(z))
|
||||
{
|
||||
acb_sqrt(res, y, prec);
|
||||
acb_mul_2exp_si(res, res, -1);
|
||||
}
|
||||
else if (acb_is_zero(y) && acb_is_zero(z))
|
||||
{
|
||||
acb_sqrt(res, x, prec);
|
||||
acb_mul_2exp_si(res, res, -1);
|
||||
}
|
||||
else if (acb_contains_zero(z))
|
||||
{
|
||||
if (acb_contains_zero(y))
|
||||
_acb_elliptic_rg(res, y, z, x, flags, prec);
|
||||
else
|
||||
_acb_elliptic_rg(res, x, z, y, flags, prec);
|
||||
}
|
||||
else
|
||||
{
|
||||
_acb_elliptic_rg(res, x, y, z, flags, prec);
|
||||
}
|
||||
}
|
||||
|
134
acb_elliptic/test/t-rg.c
Normal file
134
acb_elliptic/test/t-rg.c
Normal file
|
@ -0,0 +1,134 @@
|
|||
/*
|
||||
Copyright (C) 2017 Fredrik Johansson
|
||||
|
||||
This file is part of Arb.
|
||||
|
||||
Arb is free software: you can redistribute it and/or modify it under
|
||||
the terms of the GNU Lesser General Public License (LGPL) as published
|
||||
by the Free Software Foundation; either version 2.1 of the License, or
|
||||
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "acb_elliptic.h"
|
||||
|
||||
/* Test input from Carlson's paper and checked with mpmath. */
|
||||
|
||||
static const double testdata_rg[7][8] = {
|
||||
{0.0, 0.0, 16.0, 0.0, 16.0, 0.0, 3.1415926535897932385, 0.0},
|
||||
{2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 1.7255030280692277601, 0.0},
|
||||
{0.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.4236065423969895433, 0.0},
|
||||
{-1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.44660591677018372657, 0.70768352357515390073},
|
||||
{0.0, -1.0, -1.0, 1.0, 0.0, 1.0, 0.36023392184473309034, 0.40348623401722113741},
|
||||
{0.0, 0.0, 0.0796, 0.0, 4.0, 0.0, 1.0284758090288040022, 0.0},
|
||||
/* more tests */
|
||||
{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
slong iter;
|
||||
flint_rand_t state;
|
||||
|
||||
flint_printf("rg....");
|
||||
fflush(stdout);
|
||||
|
||||
flint_randinit(state);
|
||||
|
||||
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
|
||||
{
|
||||
acb_t x, y, z, r1, r2;
|
||||
slong prec1, prec2;
|
||||
|
||||
prec1 = 2 + n_randint(state, 300);
|
||||
prec2 = 2 + n_randint(state, 300);
|
||||
|
||||
acb_init(x);
|
||||
acb_init(y);
|
||||
acb_init(z);
|
||||
acb_init(r1);
|
||||
acb_init(r2);
|
||||
|
||||
if (iter == 0)
|
||||
{
|
||||
slong k;
|
||||
|
||||
for (k = 0; k < 7; k++)
|
||||
{
|
||||
acb_set_d_d(x, testdata_rg[k][0], testdata_rg[k][1]);
|
||||
acb_set_d_d(y, testdata_rg[k][2], testdata_rg[k][3]);
|
||||
acb_set_d_d(z, testdata_rg[k][4], testdata_rg[k][5]);
|
||||
acb_set_d_d(r2, testdata_rg[k][6], testdata_rg[k][7]);
|
||||
mag_set_d(arb_radref(acb_realref(r2)), 1e-14 * fabs(testdata_rg[k][6]));
|
||||
mag_set_d(arb_radref(acb_imagref(r2)), 1e-14 * fabs(testdata_rg[k][7]));
|
||||
|
||||
for (prec1 = 16; prec1 <= 256; prec1 *= 2)
|
||||
{
|
||||
acb_elliptic_rg(r1, x, y, z, 0, prec1);
|
||||
|
||||
if (!acb_overlaps(r1, r2) || acb_rel_accuracy_bits(r1) < prec1 * 0.9 - 10)
|
||||
{
|
||||
flint_printf("FAIL: overlap (testdata rg)\n\n");
|
||||
flint_printf("prec = %wd, accuracy = %wd\n\n", prec1, acb_rel_accuracy_bits(r1));
|
||||
flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n");
|
||||
flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n");
|
||||
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
|
||||
flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n");
|
||||
flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n");
|
||||
abort();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
acb_randtest(x, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
|
||||
acb_randtest(y, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
|
||||
acb_randtest(z, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30));
|
||||
|
||||
acb_elliptic_rg(r1, x, y, z, 0, prec1);
|
||||
|
||||
switch (n_randint(state, 6))
|
||||
{
|
||||
case 0:
|
||||
acb_elliptic_rg(r2, x, y, z, 0, prec2);
|
||||
break;
|
||||
case 1:
|
||||
acb_elliptic_rg(r2, x, z, y, 0, prec2);
|
||||
break;
|
||||
case 2:
|
||||
acb_elliptic_rg(r2, y, x, z, 0, prec2);
|
||||
break;
|
||||
case 3:
|
||||
acb_elliptic_rg(r2, y, z, x, 0, prec2);
|
||||
break;
|
||||
case 4:
|
||||
acb_elliptic_rg(r2, z, x, y, 0, prec2);
|
||||
break;
|
||||
default:
|
||||
acb_elliptic_rg(r2, z, y, x, 0, prec2);
|
||||
break;
|
||||
}
|
||||
|
||||
if (!acb_overlaps(r1, r2))
|
||||
{
|
||||
flint_printf("FAIL: overlap\n\n");
|
||||
flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n");
|
||||
flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n");
|
||||
flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
|
||||
flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n");
|
||||
flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n");
|
||||
abort();
|
||||
}
|
||||
|
||||
acb_clear(x);
|
||||
acb_clear(y);
|
||||
acb_clear(z);
|
||||
acb_clear(r1);
|
||||
acb_clear(r2);
|
||||
}
|
||||
|
||||
flint_randclear(state);
|
||||
flint_cleanup();
|
||||
flint_printf("PASS\n");
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
|
@ -33,8 +33,10 @@ in [Car1995]_ and chapter 19 in [NIST2012]_.
|
|||
\int_0^{\infty} \frac{dt}{\sqrt{(t+x)(t+y)(t+z)}}
|
||||
|
||||
where the square root extends continuously from positive infinity.
|
||||
The function is well-defined for `x,y,z \notin (-\infty,0)`, and with
|
||||
The integral is well-defined for `x,y,z \notin (-\infty,0)`, and with
|
||||
at most one of `x,y,z` being zero.
|
||||
When some parameters are negative real numbers, the function is
|
||||
still defined by analytic continuation.
|
||||
|
||||
In general, one or more duplication steps are applied until
|
||||
`x,y,z` are close enough to use a multivariate Taylor polynomial
|
||||
|
@ -74,13 +76,26 @@ in [Car1995]_ and chapter 19 in [NIST2012]_.
|
|||
should verify the results.
|
||||
|
||||
The special case `R_D(x, y, z) = R_J(x, y, z, z)`
|
||||
may be computed by setting *y* and *z* to the same variable.
|
||||
may be computed by setting *z* and *p* to the same variable.
|
||||
This case is handled specially to avoid redundant arithmetic operations.
|
||||
In this case, the algorithm is correct for all *x*, *y* and *z*.
|
||||
|
||||
The *flags* parameter is reserved for future use and currently
|
||||
does nothing. Passing 0 results in default behavior.
|
||||
|
||||
.. function:: void acb_elliptic_rg(acb_t res, const acb_t x, const acb_t y, const acb_t z, int flags, slong prec)
|
||||
|
||||
Evaluates the Carlson symmetric elliptic integral of the second kind
|
||||
|
||||
.. math ::
|
||||
|
||||
R_G(x,y,z) = \frac{1}{4} \int_0^{\infty}
|
||||
\frac{t}{\sqrt{(t+x)(t+y)(t+z)}}
|
||||
\left( \frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right) dt.
|
||||
|
||||
The evaluation is done by expressing `R_G` in terms of `R_F` and `R_D`.
|
||||
There are no restrictions on the variables.
|
||||
|
||||
.. function:: void acb_elliptic_rc1(acb_t res, const acb_t x, slong prec)
|
||||
|
||||
This helper function computes the special case
|
||||
|
|
Loading…
Add table
Reference in a new issue