mirror of
https://github.com/vale981/arb
synced 2025-03-06 01:41:39 -05:00
217 lines
5 KiB
C
217 lines
5 KiB
C
![]() |
/*=============================================================================
|
||
|
|
||
|
This file is part of ARB.
|
||
|
|
||
|
ARB is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
ARB is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with ARB; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2014 Fredrik Johansson
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "acb_hypgeom.h"
|
||
|
|
||
|
/* todo: negative z and integer nu */
|
||
|
/* todo: integer nu? */
|
||
|
/* todo: integer nu+1/2 */
|
||
|
/* todo: change precision when one term is small */
|
||
|
|
||
|
void
|
||
|
acb_hypgeom_bessel_j_asymp(acb_t res, const acb_t nu, const acb_t z, long prec)
|
||
|
{
|
||
|
acb_t A1, A2, B1, B2, s, t, u;
|
||
|
|
||
|
acb_init(A1);
|
||
|
acb_init(A2);
|
||
|
acb_init(B1);
|
||
|
acb_init(B2);
|
||
|
acb_init(s);
|
||
|
acb_init(t);
|
||
|
acb_init(u);
|
||
|
|
||
|
/* s = 1/2 + nu */
|
||
|
acb_one(s);
|
||
|
acb_mul_2exp_si(s, s, -1);
|
||
|
acb_add(s, s, nu, prec);
|
||
|
|
||
|
/* t = 1 + 2 nu */
|
||
|
acb_mul_2exp_si(t, nu, 1);
|
||
|
acb_add_ui(t, t, 1, prec);
|
||
|
|
||
|
acb_mul_onei(u, z);
|
||
|
acb_mul_2exp_si(u, u, 1);
|
||
|
acb_hypgeom_u_asymp(B2, s, t, u, -1, prec);
|
||
|
acb_neg(u, u);
|
||
|
acb_hypgeom_u_asymp(B1, s, t, u, -1, prec);
|
||
|
|
||
|
if (arb_is_positive(acb_realref(z)))
|
||
|
{
|
||
|
/* -(2nu+1)/4 pi + z */
|
||
|
acb_mul_2exp_si(t, nu, 1);
|
||
|
acb_add_ui(t, t, 1, prec);
|
||
|
acb_mul_2exp_si(t, t, -2);
|
||
|
acb_neg(t, t);
|
||
|
acb_const_pi(u, prec);
|
||
|
acb_mul(t, t, u, prec);
|
||
|
acb_add(t, t, z, prec);
|
||
|
acb_mul_onei(t, t);
|
||
|
|
||
|
acb_exp(A1, t, prec);
|
||
|
|
||
|
if (acb_is_real(nu) && acb_is_real(z))
|
||
|
{
|
||
|
acb_conj(A2, A1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
acb_neg(t, t);
|
||
|
acb_exp(A2, t, prec);
|
||
|
}
|
||
|
|
||
|
acb_mul(A1, A1, B1, prec);
|
||
|
acb_mul(A2, A2, B2, prec);
|
||
|
acb_add(A1, A1, A2, prec);
|
||
|
|
||
|
/* divide by sqrt(2 pi z) */
|
||
|
acb_const_pi(u, prec);
|
||
|
acb_mul_2exp_si(u, u, 1);
|
||
|
acb_mul(u, u, z, prec);
|
||
|
acb_rsqrt(u, u, prec);
|
||
|
acb_mul(A1, A1, u, prec);
|
||
|
|
||
|
acb_set(res, A1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* general case */
|
||
|
|
||
|
/* exp(iz), exp(-iz) */
|
||
|
acb_mul_onei(t, z);
|
||
|
acb_exp(u, t, prec);
|
||
|
acb_mul(B1, B1, u, prec);
|
||
|
|
||
|
if (acb_is_real(z))
|
||
|
{
|
||
|
acb_conj(u, u);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
acb_neg(t, t);
|
||
|
acb_exp(u, t, prec);
|
||
|
}
|
||
|
|
||
|
acb_mul(B2, B2, u, prec);
|
||
|
|
||
|
/* s = -(1/2+nu) */
|
||
|
acb_one(s);
|
||
|
acb_mul_2exp_si(s, s, -1);
|
||
|
acb_add(s, s, nu, prec);
|
||
|
acb_neg(s, s);
|
||
|
acb_mul_onei(t, z);
|
||
|
acb_pow(A1, t, s, prec);
|
||
|
acb_neg(t, t);
|
||
|
acb_pow(A2, t, s, prec);
|
||
|
|
||
|
acb_mul(A1, A1, B1, prec);
|
||
|
acb_mul(A2, A2, B2, prec);
|
||
|
acb_add(A1, A1, A2, prec);
|
||
|
|
||
|
acb_pow(t, z, nu, prec);
|
||
|
acb_mul(A1, A1, t, prec);
|
||
|
|
||
|
/* divide by sqrt(2pi) */
|
||
|
acb_const_pi(u, prec);
|
||
|
acb_mul_2exp_si(u, u, 1);
|
||
|
acb_rsqrt(u, u, prec);
|
||
|
acb_mul(A1, A1, u, prec);
|
||
|
|
||
|
acb_set(res, A1);
|
||
|
}
|
||
|
|
||
|
acb_clear(A1);
|
||
|
acb_clear(A2);
|
||
|
acb_clear(B1);
|
||
|
acb_clear(B2);
|
||
|
acb_clear(s);
|
||
|
acb_clear(t);
|
||
|
acb_clear(u);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
acb_hypgeom_bessel_j_0f1(acb_t res, const acb_t nu, const acb_t z, long prec)
|
||
|
{
|
||
|
acb_struct b[2];
|
||
|
acb_t w, c, t;
|
||
|
|
||
|
acb_init(b + 0);
|
||
|
acb_init(b + 1);
|
||
|
acb_init(w);
|
||
|
acb_init(c);
|
||
|
acb_init(t);
|
||
|
|
||
|
acb_add_ui(b + 0, nu, 1, prec);
|
||
|
acb_one(b + 1);
|
||
|
|
||
|
/* (z/2)^nu / gamma(nu+1) */
|
||
|
acb_mul_2exp_si(c, z, -1);
|
||
|
acb_pow(c, c, nu, prec);
|
||
|
acb_rgamma(t, b + 0, prec);
|
||
|
acb_mul(c, t, c, prec);
|
||
|
|
||
|
/* -z^2/4 */
|
||
|
acb_mul(w, z, z, prec);
|
||
|
acb_mul_2exp_si(w, w, -2);
|
||
|
acb_neg(w, w);
|
||
|
|
||
|
acb_hypgeom_pfq_direct(t, NULL, 0, b, 2, w, -1, prec);
|
||
|
|
||
|
acb_mul(res, t, c, prec);
|
||
|
|
||
|
acb_clear(b + 0);
|
||
|
acb_clear(b + 1);
|
||
|
acb_clear(w);
|
||
|
acb_clear(c);
|
||
|
acb_clear(t);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
|
||
|
The asymptotic series can be used roughly when
|
||
|
|
||
|
[(1+log(2))/log(2) = 2.44269504088896] * z > p
|
||
|
|
||
|
We are a bit more conservative and use the factor 2.
|
||
|
*/
|
||
|
|
||
|
void
|
||
|
acb_hypgeom_bessel_j(acb_t res, const acb_t nu, const acb_t z, long prec)
|
||
|
{
|
||
|
mag_t zmag;
|
||
|
|
||
|
mag_init(zmag);
|
||
|
acb_get_mag(zmag, z);
|
||
|
|
||
|
if (mag_cmp_2exp_si(zmag, 4) < 0 ||
|
||
|
(mag_cmp_2exp_si(zmag, 64) < 0 && 2 * mag_get_d(zmag) < prec))
|
||
|
acb_hypgeom_bessel_j_0f1(res, nu, z, prec);
|
||
|
else
|
||
|
acb_hypgeom_bessel_j_asymp(res, nu, z, prec);
|
||
|
|
||
|
mag_clear(zmag);
|
||
|
}
|
||
|
|