arb/examples/integrals.c

1283 lines
34 KiB
C
Raw Normal View History

2017-11-16 13:27:29 +01:00
/*
Rigorous numerical integration (with fast convergence for piecewise
holomorphic functions) using Gauss-Legendre quadrature and adaptive
subdivision.
2017-11-16 13:27:29 +01:00
Author: Fredrik Johansson.
This file is in the public domain.
*/
#include <string.h>
2016-03-03 15:42:23 +01:00
#include "flint/profiler.h"
2017-11-16 13:27:29 +01:00
#include "arb_hypgeom.h"
#include "acb_hypgeom.h"
#include "acb_dirichlet.h"
#include "acb_modular.h"
2017-11-16 13:27:29 +01:00
#include "acb_calc.h"
/* ------------------------------------------------------------------------- */
/* Example integrands */
/* ------------------------------------------------------------------------- */
2017-11-16 13:27:29 +01:00
/* f(z) = sin(z) */
int
2017-11-16 13:27:29 +01:00
f_sin(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
2017-11-16 13:27:29 +01:00
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_sin(res, z, prec);
return 0;
}
/* f(z) = floor(z) */
int
f_floor(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_real_floor(res, z, order != 0, prec);
2017-11-16 13:27:29 +01:00
return 0;
}
/* f(z) = sqrt(1-z^2) */
int
f_circle(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_one(res);
acb_submul(res, z, z, prec);
acb_real_sqrtpos(res, res, order != 0, prec);
2017-11-16 13:27:29 +01:00
return 0;
}
2017-11-16 13:27:29 +01:00
/* f(z) = 1/(1+z^2) */
int
2017-11-16 13:27:29 +01:00
f_atanderiv(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
2017-11-16 13:27:29 +01:00
flint_abort(); /* Would be needed for Taylor method. */
acb_mul(res, z, z, prec);
acb_add_ui(res, res, 1, prec);
acb_inv(res, res, prec);
return 0;
}
2017-11-16 13:27:29 +01:00
/* f(z) = sin(z + exp(z)) -- Rump's oscillatory example */
int
2017-11-16 13:27:29 +01:00
f_rump(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
2017-11-16 13:27:29 +01:00
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
2017-11-16 13:27:29 +01:00
acb_exp(res, z, prec);
acb_add(res, res, z, prec);
acb_sin(res, res, prec);
return 0;
}
/* f(z) = |z^4 + 10z^3 + 19z^2 - 6z - 6| exp(z) (for real z) --
2017-11-16 13:27:29 +01:00
Helfgott's integral on MathOverflow */
int
f_helfgott(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
2017-11-16 13:27:29 +01:00
flint_abort(); /* Would be needed for Taylor method. */
2017-11-16 13:27:29 +01:00
acb_add_si(res, z, 10, prec);
acb_mul(res, res, z, prec);
acb_add_si(res, res, 19, prec);
acb_mul(res, res, z, prec);
acb_add_si(res, res, -6, prec);
acb_mul(res, res, z, prec);
acb_add_si(res, res, -6, prec);
acb_real_abs(res, res, order != 0, prec);
2017-11-16 13:27:29 +01:00
if (acb_is_finite(res))
{
acb_t t;
acb_init(t);
acb_exp(t, z, prec);
acb_mul(res, res, t, prec);
acb_clear(t);
}
2017-11-16 13:27:29 +01:00
return 0;
}
2017-11-16 13:27:29 +01:00
/* f(z) = zeta(z) */
int
f_zeta(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_zeta(res, z, prec);
return 0;
}
2017-11-16 13:27:29 +01:00
/* f(z) = z sin(1/z), assume on real interval */
int
f_essing2(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
2017-11-16 13:27:29 +01:00
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
2017-11-16 13:27:29 +01:00
if ((order == 0) && acb_is_real(z) && arb_contains_zero(acb_realref(z)))
{
2017-11-16 13:27:29 +01:00
/* todo: arb_zero_pm_one, arb_unit_interval? */
acb_zero(res);
mag_one(arb_radref(acb_realref(res)));
}
else
{
acb_inv(res, z, prec);
acb_sin(res, res, prec);
}
2017-11-16 13:27:29 +01:00
acb_mul(res, res, z, prec);
return 0;
}
/* f(z) = sin(1/z), assume on real interval */
int
f_essing(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
if ((order == 0) && acb_is_real(z) && arb_contains_zero(acb_realref(z)))
{
/* todo: arb_zero_pm_one, arb_unit_interval? */
acb_zero(res);
mag_one(arb_radref(acb_realref(res)));
}
else
{
acb_inv(res, z, prec);
acb_sin(res, res, prec);
}
return 0;
}
2017-11-16 13:27:29 +01:00
/* f(z) = exp(-z) z^1000 */
int
f_factorial1000(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t t;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
acb_pow_ui(t, z, 1000, prec);
acb_neg(res, z);
acb_exp(res, res, prec);
acb_mul(res, res, t, prec);
acb_clear(t);
return 0;
}
/* f(z) = gamma(z) */
int
f_gamma(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_gamma(res, z, prec);
return 0;
}
/* f(z) = sin(z) + exp(-200-z^2) */
int
f_sin_plus_small(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t t;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
acb_mul(t, z, z, prec);
acb_add_ui(t, t, 200, prec);
acb_neg(t, t);
acb_exp(t, t, prec);
acb_sin(res, z, prec);
acb_add(res, res, t, prec);
acb_clear(t);
return 0;
}
/* f(z) = exp(z) */
int
f_exp(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_exp(res, z, prec);
return 0;
}
/* f(z) = exp(-z^2) */
int
f_gaussian(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_mul(res, z, z, prec);
acb_neg(res, res);
acb_exp(res, res, prec);
return 0;
}
int
f_monster(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t t;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
acb_exp(t, z, prec);
acb_real_floor(res, t, order != 0, prec);
2017-11-16 13:27:29 +01:00
if (acb_is_finite(res))
{
acb_sub(res, t, res, prec);
acb_add(t, t, z, prec);
acb_sin(t, t, prec);
acb_mul(res, res, t, prec);
}
acb_clear(t);
return 0;
}
/* f(z) = sech(10(x-0.2))^2 + sech(100(x-0.4))^4 + sech(1000(x-0.6))^6 */
int
f_spike(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
2017-11-16 13:27:29 +01:00
{
acb_t a, b, c;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(a);
acb_init(b);
2017-11-16 13:27:29 +01:00
acb_init(c);
acb_mul_ui(a, z, 10, prec);
acb_sub_ui(a, a, 2, prec);
acb_sech(a, a, prec);
acb_pow_ui(a, a, 2, prec);
acb_mul_ui(b, z, 100, prec);
acb_sub_ui(b, b, 40, prec);
acb_sech(b, b, prec);
acb_pow_ui(b, b, 4, prec);
acb_mul_ui(c, z, 1000, prec);
acb_sub_ui(c, c, 600, prec);
acb_sech(c, c, prec);
acb_pow_ui(c, c, 6, prec);
acb_add(res, a, b, prec);
acb_add(res, res, c, prec);
acb_clear(a);
acb_clear(b);
2017-11-16 13:27:29 +01:00
acb_clear(c);
return 0;
}
/* f(z) = sech(z) */
int
f_sech(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_sech(res, z, prec);
return 0;
}
/* f(z) = sech^3(z) */
int
f_sech3(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_sech(res, z, prec);
acb_cube(res, res, prec);
return 0;
}
/* f(z) = -log(z) / (1 + z) */
int
f_log_div1p(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t t;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
acb_add_ui(t, z, 1, prec);
acb_log(res, z, prec);
acb_div(res, res, t, prec);
acb_neg(res, res);
acb_clear(t);
return 0;
}
/* f(z) = z exp(-z) / (1 + exp(-z)) */
int
f_log_div1p_transformed(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t t;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
acb_neg(t, z);
acb_exp(t, t, prec);
acb_add_ui(res, t, 1, prec);
acb_div(res, t, res, prec);
acb_mul(res, res, z, prec);
acb_clear(t);
return 0;
}
int
f_elliptic_p_laurent_n(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
slong n;
acb_t tau;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
n = ((slong *)(param))[0];
acb_init(tau);
acb_onei(tau);
acb_modular_elliptic_p(res, z, tau, prec);
acb_pow_si(tau, z, -n - 1, prec);
acb_mul(res, res, tau, prec);
acb_clear(tau);
return 0;
}
/* f(z) = zeta'(z) / zeta(z) */
int
f_zeta_frac(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_struct t[2];
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
acb_init(t + 1);
acb_dirichlet_zeta_jet(t, z, 0, 2, prec);
acb_div(res, t + 1, t, prec);
acb_clear(t);
acb_clear(t + 1);
return 0;
}
int
f_lambertw(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t t;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
prec = FLINT_MIN(prec, acb_rel_accuracy_bits(z) + 10);
if (order != 0)
{
/* check for branch cut */
arb_const_e(acb_realref(t), prec);
acb_inv(t, t, prec);
acb_add(t, t, z, prec);
if (arb_contains_zero(acb_imagref(t)) &&
arb_contains_nonpositive(acb_realref(t)))
{
acb_indeterminate(t);
}
}
if (acb_is_finite(t))
{
fmpz_t k;
fmpz_init(k);
acb_lambertw(res, z, k, 0, prec);
fmpz_clear(k);
}
else
{
acb_indeterminate(res);
}
acb_clear(t);
return 0;
}
/* f(z) = max(sin(z), cos(z)) */
2018-01-15 13:33:40 +01:00
int
f_max_sin_cos(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t s, c;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(s);
acb_init(c);
acb_sin_cos(s, c, z, prec);
acb_real_max(res, s, c, order != 0, prec);
2018-01-15 13:33:40 +01:00
acb_clear(s);
acb_clear(c);
return 0;
}
/* f(z) = erf(z/sqrt(0.0002)*0.5 +1.5)*exp(-z), example provided by Silviu-Ioan Filip */
int
f_erf_bent(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t t;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
acb_set_ui(t, 1250);
acb_sqrt(t, t, prec);
acb_mul(t, t, z, prec);
acb_set_d(res, 1.5);
acb_add(res, res, t, prec);
acb_hypgeom_erf(res, res, prec);
acb_neg(t, z);
acb_exp(t, t, prec);
acb_mul(res, res, t, prec);
acb_clear(t);
return 0;
}
/* f(z) = Ai(z) */
int
f_airy_ai(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_hypgeom_airy(res, NULL, NULL, NULL, z, prec);
return 0;
}
int
f_horror(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t s, t;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(s);
acb_init(t);
acb_real_floor(res, z, order != 0, prec);
if (acb_is_finite(res))
{
acb_sub(res, z, res, prec);
acb_set_d(t, 0.5);
acb_sub(res, res, t, prec);
acb_sin_cos(s, t, z, prec);
acb_real_max(s, s, t, order != 0, prec);
acb_mul(res, res, s, prec);
}
acb_clear(s);
acb_clear(t);
return 0;
}
/* f(z) = sqrt(z) */
int
f_sqrt(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_sqrt_analytic(res, z, order != 0, prec);
return 0;
}
/* f(z) = 1/sqrt(z) */
int
f_rsqrt(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_rsqrt_analytic(res, z, order != 0, prec);
return 0;
}
/* f(z) = rgamma(z) */
int
f_rgamma(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_rgamma(res, z, prec);
return 0;
}
/* f(z) = exp(-z^2+iz) */
int
f_gaussian_twist(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_mul_onei(res, z);
acb_submul(res, z, z, prec);
acb_exp(res, res, prec);
return 0;
}
/* f(z) = exp(-z) Ai(-z) */
int
f_exp_airy(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t t;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
acb_neg(t, z);
acb_hypgeom_airy(res, NULL, NULL, NULL, t, prec);
acb_exp(t, t, prec);
acb_mul(res, res, t, prec);
acb_clear(t);
return 0;
}
/* f(z) = z sin(z) / (1 + cos(z)^2) */
int
f_sin_cos_frac(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t s, c;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(s);
acb_init(c);
acb_sin_cos(s, c, z, prec);
acb_mul(c, c, c, prec);
acb_add_ui(c, c, 1, prec);
acb_mul(s, s, z, prec);
acb_div(res, s, c, prec);
acb_clear(s);
acb_clear(c);
return 0;
}
/* f(z) = sin((1/1000 + (1-z)^2)^(-3/2)), example from Mioara Joldes' thesis
(suggested by Nicolas Brisebarre) */
int
f_sin_near_essing(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t t, u;
if (order > 1)
flint_abort(); /* Would be needed for Taylor method. */
acb_init(t);
acb_init(u);
acb_sub_ui(t, z, 1, prec);
acb_neg(t, t);
acb_mul(t, t, t, prec);
acb_one(u);
acb_div_ui(u, u, 1000, prec);
acb_add(t, t, u, prec);
acb_set_d(u, -1.5);
acb_pow_analytic(t, t, u, order != 0, prec);
acb_sin(res, t, prec);
acb_clear(t);
acb_clear(u);
return 0;
}
/* f(z) = exp(-z) (I_0(z/k))^k, from Bruno Salvy */
int
f_scaled_bessel(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
acb_t nu;
ulong k = ((ulong *) param)[0];
acb_init(nu);
acb_div_ui(res, z, k, prec);
acb_hypgeom_bessel_i_scaled(res, nu, res, prec);
acb_pow_ui(res, res, k, prec);
acb_clear(nu);
return 0;
}
/*
Bound for scaled Bessel function: 2/(2 pi x)^(1/2)
Bound for tail of integral: 2 N (k / (pi N))^(k / 2) / (k - 2).
*/
void
scaled_bessel_tail_bound(arb_t b, ulong k, const arb_t N, slong prec)
{
arb_const_pi(b, prec);
arb_mul(b, b, N, prec);
arb_ui_div(b, k, b, prec);
arb_sqrt(b, b, prec);
arb_pow_ui(b, b, k, prec);
arb_mul(b, b, N, prec);
arb_mul_ui(b, b, 2, prec);
arb_div_ui(b, b, k - 2, prec);
}
void
scaled_bessel_select_N(arb_t N, ulong k, slong prec)
{
slong e;
double f = log(k/3.14159265358979)/log(2);
e = 1;
while ((k / 2.0) * (e - f) - e < prec + 5)
e++;
arb_one(N);
arb_mul_2exp_si(N, N, e);
}
2017-11-16 13:27:29 +01:00
/* ------------------------------------------------------------------------- */
/* Main test program */
/* ------------------------------------------------------------------------- */
#define NUM_INTEGRALS 38
2017-11-16 13:27:29 +01:00
const char * descr[NUM_INTEGRALS] =
{
"int_0^100 sin(x) dx",
"4 int_0^1 1/(1+x^2) dx",
"2 int_0^{inf} 1/(1+x^2) dx (using domain truncation)",
"4 int_0^1 sqrt(1-x^2) dx",
"int_0^8 sin(x+exp(x)) dx",
2018-02-13 11:18:37 +01:00
"int_1^101 floor(x) dx",
2017-11-16 13:27:29 +01:00
"int_0^1 |x^4+10x^3+19x^2-6x-6| exp(x) dx",
"1/(2 pi i) int zeta(s) ds (closed path around s = 1)",
"int_0^1 sin(1/x) dx (slow convergence, use -heap and/or -tol)",
2017-11-16 13:27:29 +01:00
"int_0^1 x sin(1/x) dx (slow convergence, use -heap and/or -tol)",
"int_0^10000 x^1000 exp(-x) dx",
"int_1^{1+1000i} gamma(x) dx",
"int_{-10}^{10} sin(x) + exp(-200-x^2) dx",
"int_{-1020}^{-1010} exp(x) dx (use -tol 0 for relative error)",
2017-11-16 13:27:29 +01:00
"int_0^{inf} exp(-x^2) dx (using domain truncation)",
"int_0^1 sech(10(x-0.2))^2 + sech(100(x-0.4))^4 + sech(1000(x-0.6))^6 dx",
"int_0^8 (exp(x)-floor(exp(x))) sin(x+exp(x)) dx (use higher -eval)",
"int_0^{inf} sech(x) dx (using domain truncation)",
"int_0^{inf} sech^3(x) dx (using domain truncation)",
"int_0^1 -log(x)/(1+x) dx (using domain truncation)",
"int_0^{inf} x exp(-x)/(1+exp(-x)) dx (using domain truncation)",
"int_C wp(x)/x^(11) dx (contour for 10th Laurent coefficient of Weierstrass p-function)",
"N(1000) = count zeros with 0 < t <= 1000 of zeta(s) using argument principle",
"int_0^{1000} W_0(x) dx",
2018-01-15 13:33:40 +01:00
"int_0^pi max(sin(x), cos(x)) dx",
"int_{-1}^1 erf(x/sqrt(0.0002)*0.5+1.5)*exp(-x) dx",
"int_{-10}^10 Ai(x) dx",
"int_0^10 (x-floor(x)-1/2) max(sin(x),cos(x)) dx",
"int_{-1-i}^{-1+i} sqrt(x) dx",
"int_0^{inf} exp(-x^2+ix) dx (using domain truncation)",
"int_0^{inf} exp(-x) Ai(-x) dx (using domain truncation)",
"int_0^pi x sin(x) / (1 + cos(x)^2) dx",
"int_0^3 sin(0.001 + (1-x)^2)^(-3/2)) dx (slow convergence, use higher -eval)",
"int_0^{inf} exp(-x) I_0(x/3)^3 dx (using domain truncation)",
"int_0^{inf} exp(-x) I_0(x/15)^{15} dx (using domain truncation)",
"int_{-1-i}^{-1+i} 1/sqrt(x) dx",
"int_0^{inf} 1/gamma(x) dx (using domain truncation)",
2017-11-16 13:27:29 +01:00
};
int main(int argc, char *argv[])
{
acb_t s, t, a, b;
mag_t tol;
slong prec, goal;
slong N;
ulong k;
2017-11-16 13:27:29 +01:00
int integral, ifrom, ito;
int i, twice, havegoal, havetol;
acb_calc_integrate_opt_t options;
2017-11-16 13:27:29 +01:00
ifrom = ito = -1;
2017-11-16 13:27:29 +01:00
for (i = 1; i < argc; i++)
{
if (!strcmp(argv[i], "-i"))
{
if (!strcmp(argv[i+1], "all"))
{
ifrom = 0;
ito = NUM_INTEGRALS - 1;
}
else
{
ifrom = ito = atol(argv[i+1]);
if (ito < 0 || ito >= NUM_INTEGRALS)
flint_abort();
}
}
}
if (ifrom == -1)
{
flint_printf("Compute integrals using acb_calc_integrate.\n");
flint_printf("Usage: integrals -i n [-prec p] [-tol eps] [-twice] [...]\n\n");
flint_printf("-i n - compute integral n (0 <= n <= %d), or \"-i all\"\n", NUM_INTEGRALS - 1);
flint_printf("-prec p - precision in bits (default p = 64)\n");
flint_printf("-goal p - approximate relative accuracy goal (default p)\n");
flint_printf("-tol eps - approximate absolute error goal (default 2^-p)\n");
flint_printf("-twice - run twice (to see overhead of computing nodes)\n");
flint_printf("-heap - use heap for subinterval queue\n");
flint_printf("-verbose - show information\n");
flint_printf("-verbose2 - show more information\n");
flint_printf("-deg n - use quadrature degree up to n\n");
flint_printf("-eval n - limit number of function evaluations to n\n");
flint_printf("-depth n - limit subinterval queue size to n\n\n");
flint_printf("Implemented integrals:\n");
for (integral = 0; integral < NUM_INTEGRALS; integral++)
flint_printf("I%d = %s\n", integral, descr[integral]);
flint_printf("\n");
return 1;
}
acb_calc_integrate_opt_init(options);
prec = 64;
2017-11-16 13:27:29 +01:00
twice = 0;
goal = 0;
havetol = havegoal = 0;
2017-11-16 13:27:29 +01:00
acb_init(a);
acb_init(b);
acb_init(s);
acb_init(t);
mag_init(tol);
for (i = 1; i < argc; i++)
{
if (!strcmp(argv[i], "-prec"))
{
prec = atol(argv[i+1]);
}
else if (!strcmp(argv[i], "-twice"))
{
twice = 1;
}
else if (!strcmp(argv[i], "-goal"))
{
goal = atol(argv[i+1]);
if (goal < 0)
{
flint_printf("expected goal >= 0\n");
return 1;
}
havegoal = 1;
}
2017-11-16 13:27:29 +01:00
else if (!strcmp(argv[i], "-tol"))
{
arb_t x;
arb_init(x);
arb_set_str(x, argv[i+1], 10);
arb_get_mag(tol, x);
arb_clear(x);
havetol = 1;
}
else if (!strcmp(argv[i], "-deg"))
{
options->deg_limit = atol(argv[i+1]);
2017-11-16 13:27:29 +01:00
}
else if (!strcmp(argv[i], "-eval"))
{
options->eval_limit = atol(argv[i+1]);
2017-11-16 13:27:29 +01:00
}
else if (!strcmp(argv[i], "-depth"))
{
options->depth_limit = atol(argv[i+1]);
2017-11-16 13:27:29 +01:00
}
else if (!strcmp(argv[i], "-verbose"))
{
options->verbose = 1;
2017-11-16 13:27:29 +01:00
}
else if (!strcmp(argv[i], "-verbose2"))
{
options->verbose = 2;
2017-11-16 13:27:29 +01:00
}
else if (!strcmp(argv[i], "-heap"))
{
options->use_heap = 1;
2017-11-16 13:27:29 +01:00
}
}
if (!havegoal)
goal = prec;
2017-11-16 13:27:29 +01:00
if (!havetol)
mag_set_ui_2exp_si(tol, 1, -prec);
for (integral = ifrom; integral <= ito; integral++)
{
flint_printf("I%d = %s ...\n", integral, descr[integral]);
for (i = 0; i < 1 + twice; i++)
{
TIMEIT_ONCE_START
switch (integral)
{
case 0:
acb_set_d(a, 0);
acb_set_d(b, 100);
acb_calc_integrate(s, f_sin, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 1:
acb_set_d(a, 0);
acb_set_d(b, 1);
acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
acb_mul_2exp_si(s, s, 2);
break;
case 2:
acb_set_d(a, 0);
acb_one(b);
acb_mul_2exp_si(b, b, goal);
acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
arb_add_error_2exp_si(acb_realref(s), -goal);
acb_mul_2exp_si(s, s, 1);
break;
case 3:
acb_set_d(a, 0);
acb_set_d(b, 1);
acb_calc_integrate(s, f_circle, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
acb_mul_2exp_si(s, s, 2);
break;
case 4:
acb_set_d(a, 0);
acb_set_d(b, 8);
acb_calc_integrate(s, f_rump, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 5:
acb_set_d(a, 1);
acb_set_d(b, 101);
acb_calc_integrate(s, f_floor, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 6:
acb_set_d(a, 0);
acb_set_d(b, 1);
acb_calc_integrate(s, f_helfgott, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 7:
acb_zero(s);
acb_set_d_d(a, -1.0, -1.0);
acb_set_d_d(b, 2.0, -1.0);
acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
acb_add(s, s, t, prec);
acb_set_d_d(a, 2.0, -1.0);
acb_set_d_d(b, 2.0, 1.0);
acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
acb_add(s, s, t, prec);
acb_set_d_d(a, 2.0, 1.0);
acb_set_d_d(b, -1.0, 1.0);
acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
acb_add(s, s, t, prec);
acb_set_d_d(a, -1.0, 1.0);
acb_set_d_d(b, -1.0, -1.0);
acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
acb_add(s, s, t, prec);
acb_const_pi(t, prec);
acb_div(s, s, t, prec);
acb_mul_2exp_si(s, s, -1);
acb_div_onei(s, s);
break;
case 8:
acb_set_d(a, 0);
acb_set_d(b, 1);
acb_calc_integrate(s, f_essing, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 9:
acb_set_d(a, 0);
acb_set_d(b, 1);
acb_calc_integrate(s, f_essing2, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 10:
acb_set_d(a, 0);
acb_set_d(b, 10000);
acb_calc_integrate(s, f_factorial1000, NULL, a, b, goal, tol, options, prec);
break;
case 11:
2017-11-16 13:27:29 +01:00
acb_set_d_d(a, 1.0, 0.0);
acb_set_d_d(b, 1.0, 1000.0);
acb_calc_integrate(s, f_gamma, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 12:
2017-11-16 13:27:29 +01:00
acb_set_d(a, -10.0);
acb_set_d(b, 10.0);
acb_calc_integrate(s, f_sin_plus_small, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 13:
2017-11-16 13:27:29 +01:00
acb_set_d(a, -1020.0);
acb_set_d(b, -1010.0);
acb_calc_integrate(s, f_exp, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 14:
2017-11-16 13:27:29 +01:00
acb_set_d(a, 0);
acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0));
acb_calc_integrate(s, f_gaussian, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
acb_mul(b, b, b, prec);
acb_neg(b, b);
acb_exp(b, b, prec);
arb_add_error(acb_realref(s), acb_realref(b));
break;
case 15:
2017-11-16 13:27:29 +01:00
acb_set_d(a, 0.0);
acb_set_d(b, 1.0);
acb_calc_integrate(s, f_spike, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 16:
2017-11-16 13:27:29 +01:00
acb_set_d(a, 0.0);
acb_set_d(b, 8.0);
acb_calc_integrate(s, f_monster, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
break;
case 17:
2017-11-16 13:27:29 +01:00
acb_set_d(a, 0);
acb_set_d(b, ceil(goal * 0.693147181 + 1.0));
acb_calc_integrate(s, f_sech, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
acb_neg(b, b);
acb_exp(b, b, prec);
acb_mul_2exp_si(b, b, 1);
arb_add_error(acb_realref(s), acb_realref(b));
break;
case 18:
2017-11-16 13:27:29 +01:00
acb_set_d(a, 0);
acb_set_d(b, ceil(goal * 0.693147181 / 3.0 + 2.0));
acb_calc_integrate(s, f_sech3, NULL, a, b, goal, tol, options, prec);
2017-11-16 13:27:29 +01:00
acb_neg(b, b);
acb_mul_ui(b, b, 3, prec);
acb_exp(b, b, prec);
acb_mul_2exp_si(b, b, 3);
acb_div_ui(b, b, 3, prec);
arb_add_error(acb_realref(s), acb_realref(b));
break;
case 19:
if (goal < 0)
abort();
/* error bound 2^-N (1+N) when truncated at 2^-N */
N = goal + FLINT_BIT_COUNT(goal);
acb_one(a);
acb_mul_2exp_si(a, a, -N);
acb_one(b);
acb_calc_integrate(s, f_log_div1p, NULL, a, b, goal, tol, options, prec);
acb_set_ui(b, N + 1);
acb_mul_2exp_si(b, b, -N);
arb_add_error(acb_realref(s), acb_realref(b));
break;
case 20:
if (goal < 0)
abort();
/* error bound (N+1) exp(-N) when truncated at N */
N = goal + FLINT_BIT_COUNT(goal);
acb_zero(a);
acb_set_ui(b, N);
acb_calc_integrate(s, f_log_div1p_transformed, NULL, a, b, goal, tol, options, prec);
acb_neg(b, b);
acb_exp(b, b, prec);
acb_mul_ui(b, b, N + 1, prec);
arb_add_error(acb_realref(s), acb_realref(b));
break;
case 21:
acb_zero(s);
N = 10;
acb_set_d_d(a, 0.5, -0.5);
acb_set_d_d(b, 0.5, 0.5);
acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
acb_add(s, s, t, prec);
acb_set_d_d(a, 0.5, 0.5);
acb_set_d_d(b, -0.5, 0.5);
acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
acb_add(s, s, t, prec);
acb_set_d_d(a, -0.5, 0.5);
acb_set_d_d(b, -0.5, -0.5);
acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
acb_add(s, s, t, prec);
acb_set_d_d(a, -0.5, -0.5);
acb_set_d_d(b, 0.5, -0.5);
acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec);
acb_add(s, s, t, prec);
acb_const_pi(t, prec);
acb_div(s, s, t, prec);
acb_mul_2exp_si(s, s, -1);
acb_div_onei(s, s);
break;
case 22:
acb_zero(s);
N = 1000;
acb_set_d_d(a, 100.0, 0.0);
acb_set_d_d(b, 100.0, N);
acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec);
acb_add(s, s, t, prec);
acb_set_d_d(a, 100, N);
acb_set_d_d(b, 0.5, N);
acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec);
acb_add(s, s, t, prec);
acb_div_onei(s, s);
arb_zero(acb_imagref(s));
acb_set_ui(t, N);
acb_dirichlet_hardy_theta(t, t, NULL, NULL, 1, prec);
acb_add(s, s, t, prec);
acb_const_pi(t, prec);
acb_div(s, s, t, prec);
acb_add_ui(s, s, 1, prec);
break;
case 23:
acb_set_d(a, 0.0);
acb_set_d(b, 1000.0);
acb_calc_integrate(s, f_lambertw, NULL, a, b, goal, tol, options, prec);
break;
2018-01-15 13:33:40 +01:00
case 24:
acb_set_d(a, 0.0);
acb_const_pi(b, prec);
acb_calc_integrate(s, f_max_sin_cos, NULL, a, b, goal, tol, options, prec);
break;
case 25:
acb_set_si(a, -1);
acb_set_si(b, 1);
acb_calc_integrate(s, f_erf_bent, NULL, a, b, goal, tol, options, prec);
break;
case 26:
acb_set_si(a, -10);
acb_set_si(b, 10);
acb_calc_integrate(s, f_airy_ai, NULL, a, b, goal, tol, options, prec);
break;
case 27:
acb_set_si(a, 0);
acb_set_si(b, 10);
acb_calc_integrate(s, f_horror, NULL, a, b, goal, tol, options, prec);
break;
case 28:
acb_set_d_d(a, -1, -1);
acb_set_d_d(b, -1, 1);
acb_calc_integrate(s, f_sqrt, NULL, a, b, goal, tol, options, prec);
break;
case 29:
acb_set_d(a, 0);
acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0));
acb_calc_integrate(s, f_gaussian_twist, NULL, a, b, goal, tol, options, prec);
acb_mul(b, b, b, prec);
acb_neg(b, b);
acb_exp(b, b, prec);
arb_add_error(acb_realref(s), acb_realref(b));
arb_add_error(acb_imagref(s), acb_realref(b));
break;
case 30:
acb_set_d(a, 0);
acb_set_d(b, ceil(goal * 0.693147181 + 1.0));
acb_calc_integrate(s, f_exp_airy, NULL, a, b, goal, tol, options, prec);
acb_neg(b, b);
acb_exp(b, b, prec);
acb_mul_2exp_si(b, b, 1);
arb_add_error(acb_realref(s), acb_realref(b));
break;
case 31:
acb_zero(a);
acb_const_pi(b, prec);
acb_calc_integrate(s, f_sin_cos_frac, NULL, a, b, goal, tol, options, prec);
break;
case 32:
acb_zero(a);
acb_set_ui(b, 3);
acb_calc_integrate(s, f_sin_near_essing, NULL, a, b, goal, tol, options, prec);
break;
case 33:
acb_zero(a);
acb_zero(b);
k = 3;
scaled_bessel_select_N(acb_realref(b), k, prec);
acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec);
scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec);
arb_add_error(acb_realref(s), acb_realref(a));
break;
case 34:
acb_zero(a);
acb_zero(b);
k = 15;
scaled_bessel_select_N(acb_realref(b), k, prec);
acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec);
scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec);
arb_add_error(acb_realref(s), acb_realref(a));
break;
case 35:
acb_set_d_d(a, -1, -1);
acb_set_d_d(b, -1, 1);
acb_calc_integrate(s, f_rsqrt, NULL, a, b, goal, tol, options, prec);
case 36:
if (goal < 0)
abort();
acb_zero(a);
acb_set_ui(b, 4 + (goal + 1) / 2);
acb_calc_integrate(s, f_rgamma, NULL, a, b, goal, tol, options, prec);
arb_add_error_2exp_si(acb_realref(s), -goal);
break;
2017-11-16 13:27:29 +01:00
default:
abort();
}
2017-11-16 13:27:29 +01:00
TIMEIT_ONCE_STOP
}
flint_printf("I%d = ", integral);
acb_printn(s, 3.333 * prec, 0);
flint_printf("\n\n");
}
acb_clear(a);
acb_clear(b);
acb_clear(s);
acb_clear(t);
mag_clear(tol);
flint_cleanup();
return 0;
}