arb/acb_poly/zeta_em_sum.c

136 lines
4 KiB
C
Raw Normal View History

/*
2014-06-13 22:08:25 +02:00
Copyright (C) 2014 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
2014-06-13 22:08:25 +02:00
#include "acb_poly.h"
/* res = src * (c + x) */
void _acb_poly_mullow_cpx(acb_ptr res, acb_srcptr src, slong len, const acb_t c, slong trunc, slong prec)
2014-06-13 22:08:25 +02:00
{
slong i;
2014-06-13 22:08:25 +02:00
if (len < trunc)
acb_set(res + len, src + len - 1);
for (i = len - 1; i > 0; i--)
{
acb_mul(res + i, src + i, c, prec);
acb_add(res + i, res + i, src + i - 1, prec);
}
acb_mul(res, src, c, prec);
}
/* todo: don't hardcode this */
#define SIEVE_ALLOC_LIMIT 4e9 /* 4 GB */
2014-06-13 22:08:25 +02:00
void
_acb_poly_zeta_em_sum(acb_ptr z, const acb_t s, const acb_t a, int deflate, ulong N, ulong M, slong d, slong prec)
2014-06-13 22:08:25 +02:00
{
acb_ptr t, u, v, term, sum;
acb_t Na, one;
slong i;
2014-06-13 22:08:25 +02:00
t = _acb_vec_init(d + 1);
u = _acb_vec_init(d);
v = _acb_vec_init(d);
term = _acb_vec_init(d);
sum = _acb_vec_init(d);
acb_init(Na);
acb_init(one);
2014-06-13 22:08:25 +02:00
prec += 2 * (FLINT_BIT_COUNT(N) + FLINT_BIT_COUNT(d));
acb_one(one);
2014-06-13 22:08:25 +02:00
/* sum 1/(k+a)^(s+x) */
if (acb_is_one(a) && d <= 3 && _acb_vec_estimate_allocated_bytes(d * N / 6, prec) < SIEVE_ALLOC_LIMIT)
2014-06-13 22:08:25 +02:00
_acb_poly_powsum_one_series_sieved(sum, s, N, d, prec);
else if (N > 50 && flint_get_num_threads() > 1)
_acb_poly_powsum_series_naive_threaded(sum, s, a, one, N, d, prec);
2014-06-13 22:08:25 +02:00
else
_acb_poly_powsum_series_naive(sum, s, a, one, N, d, prec);
2014-06-13 22:08:25 +02:00
/* t = 1/(N+a)^(s+x); we might need one extra term for deflation */
acb_add_ui(Na, a, N, prec);
_acb_poly_acb_invpow_cpx(t, Na, s, d + 1, prec);
/* sum += (N+a) * 1/((s+x)-1) * t */
if (!deflate)
{
/* u = (N+a)^(1-(s+x)) */
acb_sub_ui(v, s, 1, prec);
_acb_poly_acb_invpow_cpx(u, Na, v, d, prec);
/* divide by 1/((s-1) + x) */
acb_sub_ui(v, s, 1, prec);
acb_div(u, u, v, prec);
for (i = 1; i < d; i++)
{
acb_sub(u + i, u + i, u + i - 1, prec);
acb_div(u + i, u + i, v, prec);
}
_acb_vec_add(sum, sum, u, d, prec);
}
/* sum += ((N+a)^(1-(s+x)) - 1) / ((s+x) - 1) */
else
{
/* at s = 1, this becomes (N*t - 1)/x, i.e. just remove one coeff */
if (acb_is_one(s))
{
for (i = 0; i < d; i++)
acb_mul(u + i, t + i + 1, Na, prec);
_acb_vec_add(sum, sum, u, d, prec);
}
else
{
/* TODO: this is numerically unstable for large derivatives,
and divides by zero if s contains 1. We want a good
way to evaluate the power series ((N+a)^y - 1) / y where y has
nonzero constant term, without doing a division.
How is this best done? */
_acb_vec_scalar_mul(t, t, d, Na, prec);
acb_sub_ui(t + 0, t + 0, 1, prec);
acb_sub_ui(u + 0, s, 1, prec);
acb_inv(u + 0, u + 0, prec);
for (i = 1; i < d; i++)
acb_mul(u + i, u + i - 1, u + 0, prec);
for (i = 1; i < d; i += 2)
acb_neg(u + i, u + i);
_acb_poly_mullow(v, u, d, t, d, d, prec);
_acb_vec_add(sum, sum, v, d, prec);
_acb_poly_acb_invpow_cpx(t, Na, s, d, prec);
}
}
/* sum += u = 1/2 * t */
2015-11-06 15:34:19 +00:00
_acb_vec_scalar_mul_2exp_si(u, t, d, -WORD(1));
2014-06-13 22:08:25 +02:00
_acb_vec_add(sum, sum, u, d, prec);
/* Euler-Maclaurin formula tail */
if (d < 5 || d < M / 10)
_acb_poly_zeta_em_tail_naive(u, s, Na, t, M, d, prec);
else
_acb_poly_zeta_em_tail_bsplit(u, s, Na, t, M, d, prec);
_acb_vec_add(z, sum, u, d, prec);
_acb_vec_clear(t, d + 1);
_acb_vec_clear(u, d);
_acb_vec_clear(v, d);
_acb_vec_clear(term, d);
_acb_vec_clear(sum, d);
acb_clear(Na);
acb_clear(one);
2014-06-13 22:08:25 +02:00
}