arb/fmpcb_poly/compose_divconquer.c

197 lines
5.6 KiB
C
Raw Normal View History

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2010 William Hart
Copyright (C) 2012 Sebastian Pancratz
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include "fmpcb_poly.h"
void
_fmpcb_poly_compose_divconquer(fmpcb_ptr res, fmpcb_srcptr poly1, long len1,
fmpcb_srcptr poly2, long len2, long prec)
{
long i, j, k, n;
long *hlen, alloc, powlen;
fmpcb_ptr v, pow, temp;
fmpcb_ptr * h;
if (len1 == 1)
{
fmpcb_set(res, poly1);
return;
}
if (len2 == 1)
{
_fmpcb_poly_evaluate(res, poly1, len1, poly2, prec);
return;
}
if (len1 == 2)
{
_fmpcb_poly_compose_horner(res, poly1, len1, poly2, len2, prec);
return;
}
/* Initialisation */
hlen = (long *) flint_malloc(((len1 + 1) / 2) * sizeof(long));
for (k = 1; (2 << k) < len1; k++) ;
hlen[0] = hlen[1] = ((1 << k) - 1) * (len2 - 1) + 1;
for (i = k - 1; i > 0; i--)
{
long hi = (len1 + (1 << i) - 1) / (1 << i);
for (n = (hi + 1) / 2; n < hi; n++)
hlen[n] = ((1 << i) - 1) * (len2 - 1) + 1;
}
powlen = (1 << k) * (len2 - 1) + 1;
alloc = 0;
for (i = 0; i < (len1 + 1) / 2; i++)
alloc += hlen[i];
v = _fmpcb_vec_init(alloc + 2 * powlen);
h = (fmpcb_ptr *) flint_malloc(((len1 + 1) / 2) * sizeof(fmpcb_ptr));
h[0] = v;
for (i = 0; i < (len1 - 1) / 2; i++)
{
h[i + 1] = h[i] + hlen[i];
hlen[i] = 0;
}
hlen[(len1 - 1) / 2] = 0;
pow = v + alloc;
temp = pow + powlen;
/* Let's start the actual work */
for (i = 0, j = 0; i < len1 / 2; i++, j += 2)
{
if (!fmpcb_is_zero(poly1 + j + 1))
{
_fmpcb_vec_scalar_mul(h[i], poly2, len2, poly1 + j + 1, prec);
fmpcb_add(h[i], h[i], poly1 + j, prec);
hlen[i] = len2;
}
else if (!fmpcb_is_zero(poly1 + j))
{
fmpcb_set(h[i], poly1 + j);
hlen[i] = 1;
}
}
if ((len1 & 1L))
{
if (!fmpcb_is_zero(poly1 + j))
{
fmpcb_set(h[i], poly1 + j);
hlen[i] = 1;
}
}
_fmpcb_poly_mul(pow, poly2, len2, poly2, len2, prec);
powlen = 2 * len2 - 1;
for (n = (len1 + 1) / 2; n > 2; n = (n + 1) / 2)
{
if (hlen[1] > 0)
{
long templen = powlen + hlen[1] - 1;
_fmpcb_poly_mul(temp, pow, powlen, h[1], hlen[1], prec);
_fmpcb_poly_add(h[0], temp, templen, h[0], hlen[0], prec);
hlen[0] = FLINT_MAX(hlen[0], templen);
}
for (i = 1; i < n / 2; i++)
{
if (hlen[2*i + 1] > 0)
{
_fmpcb_poly_mul(h[i], pow, powlen, h[2*i + 1], hlen[2*i + 1], prec);
hlen[i] = hlen[2*i + 1] + powlen - 1;
} else
hlen[i] = 0;
_fmpcb_poly_add(h[i], h[i], hlen[i], h[2*i], hlen[2*i], prec);
hlen[i] = FLINT_MAX(hlen[i], hlen[2*i]);
}
if ((n & 1L))
{
_fmpcb_vec_set(h[i], h[2*i], hlen[2*i]);
hlen[i] = hlen[2*i];
}
_fmpcb_poly_mul(temp, pow, powlen, pow, powlen, prec);
powlen += powlen - 1;
{
fmpcb_ptr t = pow;
pow = temp;
temp = t;
}
}
_fmpcb_poly_mul(res, pow, powlen, h[1], hlen[1], prec);
_fmpcb_vec_add(res, res, h[0], hlen[0], prec);
_fmpcb_vec_clear(v, alloc + 2 * powlen);
flint_free(h);
flint_free(hlen);
}
void
fmpcb_poly_compose_divconquer(fmpcb_poly_t res,
const fmpcb_poly_t poly1, const fmpcb_poly_t poly2, long prec)
{
const long len1 = poly1->length;
const long len2 = poly2->length;
if (len1 == 0)
{
fmpcb_poly_zero(res);
}
else if (len1 == 1 || len2 == 0)
{
fmpcb_poly_set_fmpcb(res, poly1->coeffs);
}
else
{
const long lenr = (len1 - 1) * (len2 - 1) + 1;
if (res != poly1 && res != poly2)
{
fmpcb_poly_fit_length(res, lenr);
_fmpcb_poly_compose_divconquer(res->coeffs, poly1->coeffs, len1,
poly2->coeffs, len2, prec);
}
else
{
fmpcb_poly_t t;
fmpcb_poly_init2(t, lenr);
_fmpcb_poly_compose_divconquer(t->coeffs, poly1->coeffs, len1,
poly2->coeffs, len2, prec);
fmpcb_poly_swap(res, t);
fmpcb_poly_clear(t);
}
_fmpcb_poly_set_length(res, lenr);
_fmpcb_poly_normalise(res);
}
}