mirror of
https://github.com/vale981/arb
synced 2025-03-07 02:11:38 -05:00
116 lines
3.1 KiB
C
116 lines
3.1 KiB
C
![]() |
/*=============================================================================
|
||
|
|
||
|
This file is part of ARB.
|
||
|
|
||
|
ARB is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
ARB is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with ARB; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2012 Fredrik Johansson
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "fmpcb.h"
|
||
|
|
||
|
/*
|
||
|
Sets r = exp((-1)^inverse * (1/m) * (log(a) + 2 pi i k)). As k goes from 0 to m-1, this
|
||
|
expression gives all the mth (inverse) roots of the complex number a, starting with
|
||
|
the principal mth root.
|
||
|
|
||
|
Algorithm: if the precision is high enough and |m| is small enough, we
|
||
|
use Newton iteration to compute an inverse |m|-th root by solving
|
||
|
f(z) = (1/z)^m - a = 0, by calling fmpcb_invroot_newton.
|
||
|
The initial value is obtained by evaluating the exponential function.
|
||
|
TODO: we should check that the initial value isolates the right root
|
||
|
(if the error of a is large).
|
||
|
*/
|
||
|
|
||
|
void
|
||
|
fmpcb_root_via_exp(fmpcb_t r, const fmpcb_t a, ulong k, ulong m, int inverse, long prec)
|
||
|
{
|
||
|
fmpcb_log(r, a, prec);
|
||
|
|
||
|
if (k != 0)
|
||
|
{
|
||
|
fmprb_t t;
|
||
|
fmprb_init(t);
|
||
|
fmprb_const_pi(t, prec);
|
||
|
fmprb_mul_2exp_si(t, t, 1);
|
||
|
fmprb_mul_ui(t, t, k, prec);
|
||
|
fmprb_add(fmpcb_imagref(r), fmpcb_imagref(r), t, prec);
|
||
|
fmprb_clear(t);
|
||
|
}
|
||
|
|
||
|
fmpcb_div_ui(r, r, m, prec);
|
||
|
if (inverse)
|
||
|
fmpcb_neg(r, r);
|
||
|
|
||
|
fmpcb_exp(r, r, prec);
|
||
|
}
|
||
|
|
||
|
/* fixme: m+2 overflows in Newton */
|
||
|
|
||
|
|
||
|
|
||
|
void
|
||
|
fmpcb_root(fmpcb_t r, const fmpcb_t a, ulong k, ulong m, int inverse, long prec)
|
||
|
{
|
||
|
if (m == 1)
|
||
|
{
|
||
|
if (inverse)
|
||
|
fmpcb_inv(r, a, prec);
|
||
|
else
|
||
|
fmpcb_set_round(r, a, prec);
|
||
|
}
|
||
|
else if (prec < 300)
|
||
|
{
|
||
|
fmpcb_root_via_exp(r, a, k, m, inverse, prec);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
long startprec;
|
||
|
|
||
|
fmpcb_t t;
|
||
|
fmpcb_init(t);
|
||
|
|
||
|
startprec = 100;
|
||
|
fmpcb_root_via_exp(t, a, k, m, 1, startprec);
|
||
|
|
||
|
/* note: should check isolation first */
|
||
|
if (1)
|
||
|
{
|
||
|
fmpcb_invroot_newton(t, a, m, t, startprec, prec);
|
||
|
}
|
||
|
|
||
|
if (inverse)
|
||
|
{
|
||
|
fmpcb_set(r, t);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (fmpcb_is_one(a))
|
||
|
fmpcb_conj(r, t);
|
||
|
else if (m == 2)
|
||
|
fmpcb_mul(r, t, a, prec);
|
||
|
else
|
||
|
fmpcb_inv(r, t, prec);
|
||
|
}
|
||
|
|
||
|
fmpcb_clear(t);
|
||
|
}
|
||
|
}
|
||
|
|