arb/fmprb/gamma.c

212 lines
5.4 KiB
C
Raw Normal View History

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include <math.h>
#include "arith.h"
#include "fmprb.h"
/* TODO: the following helper functions should be moved to separate files,
and need test code */
long bernoulli_cache_num = 0;
fmpq * bernoulli_cache = NULL;
/* makes sure that b_0, b_1 ... b_{n-1} are cached
TODO: don't recompute from scratch if nearly large enough */
void
bernoulli_cache_compute(long n)
{
if (bernoulli_cache_num < n)
{
long new_num;
new_num = FLINT_MAX(bernoulli_cache_num * 2, n);
new_num = n;
_fmpz_vec_clear((fmpz *) bernoulli_cache, 2 * bernoulli_cache_num);
bernoulli_cache = (fmpq *) _fmpz_vec_init(2 * new_num);
arith_bernoulli_number_vec(bernoulli_cache, new_num);
bernoulli_cache_num = new_num;
}
}
2012-09-20 12:42:39 +02:00
void
fmprb_stirling_series_coeff(fmprb_t b, ulong k, long prec)
{
fmpz_t d;
fmpz_init(d);
fmprb_set_fmpz(b, fmpq_numref(bernoulli_cache + 2 * k));
fmprb_set_round(b, b, prec);
fmpz_mul2_uiui(d, fmpq_denref(bernoulli_cache + 2 * k), 2 * k, 2 * k - 1);
fmprb_div_fmpz(b, b, d, prec);
fmpz_clear(d);
}
double fmpr_get_d(const fmpr_t x)
{
double r;
mpfr_t t;
mpfr_init2(t, 53);
fmpr_get_mpfr(t, x, MPFR_RNDN);
r = mpfr_get_d(t, MPFR_RNDN);
mpfr_clear(t);
return r;
}
/*
Heuristic: we use Stirling's series if abs(x) > beta * prec.
For convergence, beta must be greater than log(2)/(2*pi) ~= 0.11.
A larger beta gives faster convergence at the expense of extra
argument reduction.
*/
#define GAMMA_STIRLING_BETA 0.2
long stirling_choose_r(const fmprb_t x, long wp)
{
double t = fmpr_get_d(fmprb_midref(x));
double want = FLINT_MAX(5, GAMMA_STIRLING_BETA * wp);
return (long) FLINT_MAX(0, want - t + 1);
}
/* TODO: speed up by caching Bernoulli number sizes */
long
stirling_choose_nterms(const fmprb_t x, long r, double bits)
{
long i;
double t, logt;
double mag;
t = fmpr_get_d(fmprb_midref(x)) + r;
logt = log(t);
for (i = 1; ; i++)
{
mag = arith_bernoulli_number_size(2 * i) - (logt / 0.693147180559945) * (2 * i - 1);
if (mag < -bits)
return i;
}
}
void
fmprb_gamma_log_stirling(fmprb_t s, const fmprb_t z, long nterms, long prec)
{
fmprb_t t, u, b, w;
long k, term_prec;
double z_mag, term_mag;
fmprb_init(t);
fmprb_init(u);
fmprb_init(b);
fmprb_init(w);
fmprb_log(w, z, prec);
bernoulli_cache_compute(2 * (nterms + 1));
nterms = FLINT_MAX(nterms, 1);
fmprb_zero(s);
if (nterms > 1)
{
fmprb_ui_div(t, 1UL, z, prec);
fmprb_mul(u, t, t, prec);
z_mag = fmpr_get_d(fmprb_midref(w)) * 1.44269504088896;
for (k = nterms - 1; k >= 1; k--)
{
term_mag = arith_bernoulli_number_size(2 * k);
term_mag -= (2 * k - 1) * z_mag;
term_prec = prec + term_mag;
term_prec = FLINT_MIN(term_prec, prec);
term_prec = FLINT_MAX(term_prec, 10);
2012-09-20 12:42:39 +02:00
fmprb_stirling_series_coeff(b, k, term_prec);
fmprb_mul(s, s, u, term_prec);
fmprb_add(s, s, b, term_prec);
}
fmprb_mul(s, s, t, prec);
}
/* finally, we add the remainder error bound */
/* B_2n / (2n (2n-1)) */
2012-09-20 12:42:39 +02:00
fmprb_stirling_series_coeff(b, nterms, FMPRB_RAD_PREC);
/* 1/z^(2n-1) */
fmprb_ui_div(t, 1UL, z, FMPRB_RAD_PREC);
fmprb_pow_ui(t, t, 2 * nterms - 1, FMPRB_RAD_PREC);
fmprb_mul(t, t, b, FMPRB_RAD_PREC);
fmprb_add_error(s, t);
/* (z-0.5)*log(z) - z + log(2*pi)/2 */
fmprb_set_ui(t, 1);
fmprb_mul_2exp_si(t, t, -1);
fmprb_sub(t, z, t, prec);
fmprb_mul(t, w, t, prec);
fmprb_add(s, s, t, prec);
fmprb_sub(s, s, z, prec);
fmprb_const_log_sqrt2pi(t, prec);
fmprb_add(s, s, t, prec);
fmprb_clear(t);
fmprb_clear(u);
fmprb_clear(b);
fmprb_clear(w);
}
void
fmprb_gamma_log(fmprb_t y, const fmprb_t x, long prec)
{
long r, n, wp;
fmprb_t t, u;
wp = prec + FLINT_BIT_COUNT(prec);
r = stirling_choose_r(x, wp);
n = stirling_choose_nterms(x, r, wp);
/* log(gamma(x)) = log(gamma(x+r)) - log(rf(x,r)) */
fmprb_init(t);
fmprb_init(u);
fmprb_add_ui(t, x, r, wp);
fmprb_gamma_log_stirling(u, t, n, wp);
fmprb_rfac_ui_bsplit(t, x, r, wp);
fmprb_log(t, t, wp);
fmprb_sub(y, u, t, prec);
fmprb_clear(t);
fmprb_clear(u);
}