2016-04-26 17:20:05 +02:00
|
|
|
/*
|
2014-05-14 16:59:09 +02:00
|
|
|
Copyright (C) 2012 Fredrik Johansson
|
|
|
|
|
2016-04-26 17:20:05 +02:00
|
|
|
This file is part of Arb.
|
|
|
|
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
2014-05-14 16:59:09 +02:00
|
|
|
|
|
|
|
#include "arb_mat.h"
|
|
|
|
|
|
|
|
int
|
2018-02-25 21:32:49 -06:00
|
|
|
arb_mat_solve_lu(arb_mat_t X, const arb_mat_t A, const arb_mat_t B, slong prec)
|
2014-05-14 16:59:09 +02:00
|
|
|
{
|
|
|
|
int result;
|
2015-11-05 17:57:50 +00:00
|
|
|
slong n, m, *perm;
|
2014-05-14 16:59:09 +02:00
|
|
|
arb_mat_t LU;
|
|
|
|
|
|
|
|
n = arb_mat_nrows(A);
|
|
|
|
m = arb_mat_ncols(X);
|
|
|
|
|
|
|
|
if (n == 0 || m == 0)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
perm = _perm_init(n);
|
|
|
|
arb_mat_init(LU, n, n);
|
|
|
|
|
|
|
|
result = arb_mat_lu(perm, LU, A, prec);
|
|
|
|
|
|
|
|
if (result)
|
|
|
|
arb_mat_solve_lu_precomp(X, perm, LU, B, prec);
|
|
|
|
|
|
|
|
arb_mat_clear(LU);
|
|
|
|
_perm_clear(perm);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
2018-02-25 21:32:49 -06:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Helper function to compute a lower bound of 1 - inf_norm(I - A*B).
|
|
|
|
* Returns zero when this lower bound is zero.
|
|
|
|
*/
|
|
|
|
int _mag_err_complement(mag_t m,
|
|
|
|
const arb_mat_t A, const arb_mat_t B, slong prec)
|
|
|
|
{
|
|
|
|
slong n;
|
|
|
|
arb_mat_t AB, E;
|
|
|
|
mag_t err;
|
|
|
|
|
|
|
|
n = arb_mat_nrows(A);
|
|
|
|
|
|
|
|
mag_init(err);
|
|
|
|
arb_mat_init(AB, n, n);
|
|
|
|
arb_mat_init(E, n, n);
|
|
|
|
|
|
|
|
arb_mat_mul(AB, A, B, prec);
|
|
|
|
arb_mat_one(E);
|
|
|
|
arb_mat_sub(E, E, AB, prec);
|
|
|
|
arb_mat_bound_inf_norm(err, E);
|
|
|
|
mag_one(m);
|
|
|
|
mag_sub_lower(m, m, err);
|
|
|
|
|
|
|
|
mag_clear(err);
|
|
|
|
arb_mat_clear(AB);
|
|
|
|
arb_mat_clear(E);
|
|
|
|
|
|
|
|
return !mag_is_zero(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
int arb_mat_solve_precond_precomp(arb_mat_t X, const arb_mat_t A,
|
|
|
|
const arb_mat_t B, const arb_mat_t R, const arb_mat_t T, slong prec)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
slong m, n;
|
|
|
|
mag_t d;
|
|
|
|
|
|
|
|
result = 0;
|
|
|
|
|
|
|
|
n = arb_mat_nrows(A);
|
|
|
|
m = arb_mat_ncols(X);
|
|
|
|
|
|
|
|
if (n == 0 || m == 0)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* Use Theorem 10.2 of Rump in Acta Numerica 2010 */
|
|
|
|
mag_init(d);
|
|
|
|
if (_mag_err_complement(d, R, A, prec))
|
|
|
|
{
|
2018-02-26 11:23:41 -06:00
|
|
|
arb_mat_t C;
|
2018-02-25 21:32:49 -06:00
|
|
|
|
|
|
|
arb_mat_init(C, n, m);
|
2018-02-26 11:23:41 -06:00
|
|
|
{
|
|
|
|
arb_mat_t B_prime, B_error;
|
2018-02-25 21:32:49 -06:00
|
|
|
|
2018-02-26 11:23:41 -06:00
|
|
|
arb_mat_init(B_prime, n, m);
|
|
|
|
arb_mat_init(B_error, n, m);
|
2018-02-25 21:32:49 -06:00
|
|
|
|
2018-02-26 11:23:41 -06:00
|
|
|
arb_mat_mul(B_prime, A, T, prec);
|
|
|
|
arb_mat_sub(B_error, B, B_prime, prec);
|
|
|
|
arb_mat_mul(C, R, B_error, prec);
|
|
|
|
|
|
|
|
arb_mat_clear(B_prime);
|
|
|
|
arb_mat_clear(B_error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Each column gets its own error bound. */
|
2018-02-25 21:32:49 -06:00
|
|
|
arb_mat_set(X, T);
|
2018-02-26 11:23:41 -06:00
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
mag_t e, err;
|
|
|
|
|
|
|
|
mag_init(e);
|
|
|
|
mag_init(err);
|
|
|
|
|
|
|
|
for (j = 0; j < m; j++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
arb_get_mag(e, arb_mat_entry(C, i, j));
|
|
|
|
mag_max(err, err, e);
|
|
|
|
}
|
|
|
|
mag_div(err, err, d);
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
arb_add_error_mag(arb_mat_entry(X, i, j), err);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mag_clear(e);
|
|
|
|
mag_clear(err);
|
|
|
|
}
|
2018-02-25 21:32:49 -06:00
|
|
|
|
|
|
|
arb_mat_clear(C);
|
|
|
|
|
|
|
|
result = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
mag_clear(d);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
arb_mat_solve_precond(arb_mat_t X,
|
|
|
|
const arb_mat_t A, const arb_mat_t B, slong prec)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
slong m, n;
|
|
|
|
arb_mat_t R, T;
|
|
|
|
|
|
|
|
n = arb_mat_nrows(A);
|
|
|
|
m = arb_mat_ncols(X);
|
|
|
|
|
|
|
|
if (n == 0 || m == 0)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
arb_mat_init(R, n, n);
|
|
|
|
arb_mat_init(T, n, m);
|
|
|
|
{
|
|
|
|
slong *perm;
|
|
|
|
arb_mat_t I, LU;
|
|
|
|
|
|
|
|
perm = _perm_init(n);
|
|
|
|
arb_mat_init(I, n, n);
|
|
|
|
arb_mat_init(LU, n, n);
|
|
|
|
|
|
|
|
arb_mat_one(I);
|
|
|
|
result = arb_mat_approx_lu(perm, LU, A, prec);
|
|
|
|
if (result)
|
|
|
|
{
|
|
|
|
arb_mat_approx_solve_lu_precomp(R, perm, LU, I, prec);
|
|
|
|
arb_mat_approx_solve_lu_precomp(T, perm, LU, B, prec);
|
|
|
|
}
|
|
|
|
|
|
|
|
_perm_clear(perm);
|
|
|
|
arb_mat_clear(I);
|
|
|
|
arb_mat_clear(LU);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (result)
|
|
|
|
result = arb_mat_solve_precond_precomp(X, A, B, R, T, prec);
|
|
|
|
|
|
|
|
arb_mat_clear(R);
|
|
|
|
arb_mat_clear(T);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
arb_mat_solve(arb_mat_t X, const arb_mat_t A, const arb_mat_t B, slong prec)
|
|
|
|
{
|
|
|
|
return arb_mat_solve_precond(X, A, B, prec);
|
|
|
|
}
|