mirror of
https://github.com/vale981/arb
synced 2025-03-06 01:41:39 -05:00
200 lines
5 KiB
C
200 lines
5 KiB
C
![]() |
/*=============================================================================
|
||
|
|
||
|
This file is part of ARB.
|
||
|
|
||
|
ARB is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
ARB is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with ARB; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2012 Fredrik Johansson
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "double_extras.h"
|
||
|
#include "acb_mat.h"
|
||
|
|
||
|
long _arb_mat_exp_choose_N(const arf_t norm, long prec);
|
||
|
|
||
|
void _arb_mat_exp_bound(arf_t err, const arf_t norm, long N);
|
||
|
|
||
|
/* evaluates the truncated Taylor series (assumes no aliasing) */
|
||
|
void
|
||
|
_acb_mat_exp_taylor(acb_mat_t S, const acb_mat_t A, long N, long prec)
|
||
|
{
|
||
|
if (N == 1)
|
||
|
{
|
||
|
acb_mat_one(S);
|
||
|
}
|
||
|
else if (N == 2)
|
||
|
{
|
||
|
acb_mat_one(S);
|
||
|
acb_mat_add(S, S, A, prec);
|
||
|
}
|
||
|
else if (N == 3)
|
||
|
{
|
||
|
acb_mat_t T;
|
||
|
acb_mat_init(T, acb_mat_nrows(A), acb_mat_nrows(A));
|
||
|
acb_mat_mul(T, A, A, prec);
|
||
|
acb_mat_scalar_mul_2exp_si(T, T, -1);
|
||
|
acb_mat_add(S, A, T, prec);
|
||
|
acb_mat_one(T);
|
||
|
acb_mat_add(S, S, T, prec);
|
||
|
acb_mat_clear(T);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
long i, lo, hi, m, w, dim;
|
||
|
acb_mat_struct * pows;
|
||
|
acb_mat_t T, U;
|
||
|
fmpz_t c, f;
|
||
|
|
||
|
dim = acb_mat_nrows(A);
|
||
|
m = n_sqrt(N);
|
||
|
w = (N + m - 1) / m;
|
||
|
|
||
|
fmpz_init(c);
|
||
|
fmpz_init(f);
|
||
|
pows = flint_malloc(sizeof(acb_mat_t) * (m + 1));
|
||
|
acb_mat_init(T, dim, dim);
|
||
|
acb_mat_init(U, dim, dim);
|
||
|
|
||
|
for (i = 0; i <= m; i++)
|
||
|
{
|
||
|
acb_mat_init(pows + i, dim, dim);
|
||
|
if (i == 0)
|
||
|
acb_mat_one(pows + i);
|
||
|
else if (i == 1)
|
||
|
acb_mat_set(pows + i, A);
|
||
|
else
|
||
|
acb_mat_mul(pows + i, pows + i - 1, A, prec);
|
||
|
}
|
||
|
|
||
|
acb_mat_zero(S);
|
||
|
fmpz_one(f);
|
||
|
|
||
|
for (i = w - 1; i >= 0; i--)
|
||
|
{
|
||
|
lo = i * m;
|
||
|
hi = FLINT_MIN(N - 1, lo + m - 1);
|
||
|
|
||
|
acb_mat_zero(T);
|
||
|
fmpz_one(c);
|
||
|
|
||
|
while (hi >= lo)
|
||
|
{
|
||
|
acb_mat_scalar_addmul_fmpz(T, pows + hi - lo, c, prec);
|
||
|
if (hi != 0)
|
||
|
fmpz_mul_ui(c, c, hi);
|
||
|
hi--;
|
||
|
}
|
||
|
|
||
|
acb_mat_mul(U, pows + m, S, prec);
|
||
|
acb_mat_scalar_mul_fmpz(S, T, f, prec);
|
||
|
acb_mat_add(S, S, U, prec);
|
||
|
fmpz_mul(f, f, c);
|
||
|
}
|
||
|
|
||
|
acb_mat_scalar_div_fmpz(S, S, f, prec);
|
||
|
|
||
|
fmpz_clear(c);
|
||
|
fmpz_clear(f);
|
||
|
for (i = 0; i <= m; i++)
|
||
|
acb_mat_clear(pows + i);
|
||
|
flint_free(pows);
|
||
|
acb_mat_clear(T);
|
||
|
acb_mat_clear(U);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
acb_mat_exp(acb_mat_t B, const acb_mat_t A, long prec)
|
||
|
{
|
||
|
long i, j, dim, wp, N, q, r;
|
||
|
arf_t norm, err;
|
||
|
acb_mat_t T;
|
||
|
|
||
|
dim = acb_mat_nrows(A);
|
||
|
|
||
|
if (dim != acb_mat_ncols(A))
|
||
|
{
|
||
|
printf("acb_mat_exp: a square matrix is required!\n");
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
if (dim == 0)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
else if (dim == 1)
|
||
|
{
|
||
|
acb_exp(acb_mat_entry(B, 0, 0), acb_mat_entry(A, 0, 0), prec);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
wp = prec + 3 * FLINT_BIT_COUNT(prec);
|
||
|
|
||
|
arf_init(norm);
|
||
|
arf_init(err);
|
||
|
acb_mat_init(T, dim, dim);
|
||
|
|
||
|
acb_mat_bound_inf_norm(norm, A, MAG_BITS);
|
||
|
|
||
|
if (arf_is_zero(norm))
|
||
|
{
|
||
|
acb_mat_one(B);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
r = arf_abs_bound_lt_2exp_si(norm);
|
||
|
q = pow(wp, 0.25); /* wanted magnitude */
|
||
|
|
||
|
if (r > 2 * wp) /* too big */
|
||
|
r = 2 * wp;
|
||
|
else if (r < -q) /* tiny, no need to reduce */
|
||
|
r = 0;
|
||
|
else
|
||
|
r += q; /* reduce to magnitude 2^(-r) */
|
||
|
|
||
|
acb_mat_scalar_mul_2exp_si(T, A, -r);
|
||
|
arf_mul_2exp_si(norm, norm, -r);
|
||
|
|
||
|
N = _arb_mat_exp_choose_N(norm, wp);
|
||
|
_arb_mat_exp_bound(err, norm, N);
|
||
|
|
||
|
_acb_mat_exp_taylor(B, T, N, wp);
|
||
|
|
||
|
for (i = 0; i < dim; i++)
|
||
|
for (j = 0; j < dim; j++)
|
||
|
acb_add_error_arf(acb_mat_entry(B, i, j), err);
|
||
|
|
||
|
for (i = 0; i < r; i++)
|
||
|
{
|
||
|
acb_mat_mul(T, B, B, wp);
|
||
|
acb_mat_swap(T, B);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < dim; i++)
|
||
|
for (j = 0; j < dim; j++)
|
||
|
acb_set_round(acb_mat_entry(B, i, j),
|
||
|
acb_mat_entry(B, i, j), prec);
|
||
|
}
|
||
|
|
||
|
arf_clear(norm);
|
||
|
arf_clear(err);
|
||
|
acb_mat_clear(T);
|
||
|
}
|
||
|
|