arb/hypgeom/bound.c

287 lines
7 KiB
C
Raw Normal View History

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include <math.h>
#include "double_extras.h"
#include "hypgeom.h"
static __inline__ double d_root(double x, int r)
{
if (r == 1)
return x;
if (r == 2)
return sqrt(x);
return pow(x, 1. / r);
}
void
fmpr_gamma_ui_lbound(fmpr_t x, ulong n, long prec)
{
if (n == 0) abort();
if (n < 250)
{
fmpz_t t;
fmpz_init(t);
fmpz_fac_ui(t, n - 1);
fmpr_set_round_fmpz(x, t, prec, FMPR_RND_DOWN);
fmpz_clear(t);
}
else
{
/* (2 pi/x)^(1/2) * (x/e)^x < Gamma(x) */
fmpr_t t, u;
fmpr_init(t);
fmpr_init(u);
/* lower bound for 2 pi */
fmpr_set_ui_2exp_si(t, 843314855, -27);
fmpr_div_ui(t, t, n, prec, FMPR_RND_DOWN);
fmpr_sqrt(t, t, prec, FMPR_RND_DOWN);
/* lower bound for 1/e */
fmpr_set_ui_2exp_si(u, 197503771, -29);
fmpr_mul_ui(u, u, n, prec, FMPR_RND_DOWN);
fmpr_pow_sloppy_ui(u, u, n, prec, FMPR_RND_DOWN);
fmpr_mul(x, t, u, prec, FMPR_RND_DOWN);
fmpr_clear(t);
fmpr_clear(u);
}
}
void
fmpr_gamma_ui_ubound(fmpr_t x, ulong n, long prec)
{
if (n == 0) abort();
if (n < 250)
{
fmpz_t t;
fmpz_init(t);
fmpz_fac_ui(t, n - 1);
fmpr_set_round_fmpz(x, t, prec, FMPR_RND_UP);
fmpz_clear(t);
}
else
{
fmpr_t t, u;
fmpr_init(t);
/* Gamma(x) < e * (x / e)^x -- TODO: use a tighter bound */
fmpr_init(t);
fmpr_init(u);
/* upper bound for 1/e */
fmpr_set_ui_2exp_si(u, 197503773, -29);
fmpr_mul_ui(u, u, n, prec, FMPR_RND_UP);
fmpr_pow_sloppy_ui(u, u, n, prec, FMPR_RND_UP);
/* upper bound for e */
fmpr_set_ui_2exp_si(t, 364841613, -27);
fmpr_mul(x, t, u, prec, FMPR_RND_UP);
fmpr_clear(t);
fmpr_clear(u);
}
}
/* FIXME: use more than doubles for this */
long hypgeom_root_bound(const fmpr_t z, int r)
{
if (r == 0)
{
return 0;
}
else
{
double zd;
2013-02-05 15:10:27 +01:00
zd = fmpr_get_d(z, FMPR_RND_UP);
return d_root(zd, r) + 2;
}
}
/*
Given T(K), compute bound for T(n) z^n.
We need to multiply by
z^n * 1/rf(K+1,m)^r * (rf(K+1,m)/rf(K+1-A,m)) * (rf(K+1-B,m)/rf(K+1-2B,m))
where m = n - K. This is equal to
z^n *
(K+A)! (K-2B)! (K-B+m)!
----------------------- * ((K+m)! / K!)^(1-r)
(K-B)! (K-A+m)! (K-2B+m)!
*/
void
hypgeom_term_bound(fmpr_t Tn, const fmpr_t TK, long K, long A, long B, int r, const fmpr_t z, long n, long wp)
{
fmpr_t t, u, num, den;
long m;
fmpr_init(t);
fmpr_init(u);
fmpr_init(num);
fmpr_init(den);
m = n - K;
if (m < 0)
abort();
/* TK * z^n */
fmpr_pow_sloppy_ui(t, z, n, wp, FMPR_RND_UP);
fmpr_mul(num, TK, t, wp, FMPR_RND_UP);
/* (K+A)! (K-2B)! (K-B+m)!, upper bounding */
fmpr_gamma_ui_ubound(t, K+A+1, wp);
fmpr_mul(num, num, t, wp, FMPR_RND_UP);
fmpr_gamma_ui_ubound(t, K-2*B+1, wp);
fmpr_mul(num, num, t, wp, FMPR_RND_UP);
fmpr_gamma_ui_ubound(t, K-B+m, wp);
fmpr_mul(num, num, t, wp, FMPR_RND_UP);
/* (K-B)! (K-A+m)! (K-2B+m)!, lower bounding */
fmpr_gamma_ui_lbound(den, K-B+1, wp);
fmpr_gamma_ui_lbound(t, K-A+m+1, wp);
fmpr_mul(den, den, t, wp, FMPR_RND_DOWN);
fmpr_gamma_ui_lbound(t, K-2*B+m+1, wp);
fmpr_mul(den, den, t, wp, FMPR_RND_DOWN);
/* ((K+m)! / K!)^(1-r) */
if (r == 0)
{
fmpr_gamma_ui_ubound(t, K+m+1, wp);
fmpr_mul(num, num, t, wp, FMPR_RND_UP);
fmpr_gamma_ui_lbound(t, K+1, wp);
fmpr_mul(den, den, t, wp, FMPR_RND_DOWN);
}
else if (r != 1)
{
fmpr_gamma_ui_ubound(t, K+1, wp);
fmpr_gamma_ui_lbound(u, K+m+1, wp);
fmpr_div(t, t, u, wp, FMPR_RND_UP);
fmpr_pow_sloppy_ui(t, t, r-1, wp, FMPR_RND_UP);
fmpr_mul(num, num, t, wp, FMPR_RND_UP);
}
fmpr_div(Tn, num, den, wp, FMPR_RND_UP);
fmpr_clear(t);
fmpr_clear(u);
fmpr_clear(num);
fmpr_clear(den);
}
long
hypgeom_bound(fmpr_t error, int r,
long A, long B, long K, const fmpr_t TK, const fmpr_t z, long prec)
{
fmpr_t Tn, t, u, one, tol, num, den;
long wp = FMPRB_RAD_PREC;
long n, m;
fmpr_init(Tn);
fmpr_init(t);
fmpr_init(u);
fmpr_init(one);
fmpr_init(tol);
fmpr_init(num);
fmpr_init(den);
fmpr_one(one);
fmpr_set_ui_2exp_si(tol, 1UL, -prec);
/* approximate number of needed terms */
n = hypgeom_estimate_terms(z, r, prec);
/* required for 1 + O(1/k) part to be decreasing */
n = FLINT_MAX(n, K + 1);
/* required for z^k / (k!)^r to be decreasing */
m = hypgeom_root_bound(z, r);
n = FLINT_MAX(n, m);
/* We now have |R(k)| <= G(k) where G(k) is monotonically decreasing,
and can bound the tail using a geometric series as soon
as soon as G(k) < 1. */
/* bound T(n-1) */
hypgeom_term_bound(Tn, TK, K, A, B, r, z, n-1, wp);
while (1)
{
/* bound R(n) */
fmpr_mul_ui(num, z, n, wp, FMPR_RND_UP);
fmpr_mul_ui(num, num, n - B, wp, FMPR_RND_UP);
fmpr_set_ui(den, n - A);
fmpr_mul_ui(den, den, n - 2*B, wp, FMPR_RND_DOWN);
if (r != 0)
{
fmpr_set_ui(u, n);
fmpr_pow_sloppy_ui(u, u, r, wp, FMPR_RND_DOWN);
fmpr_mul(den, den, u, wp, FMPR_RND_DOWN);
}
fmpr_div(t, num, den, wp, FMPR_RND_UP);
/* multiply bound for T(n-1) by bound for R(n) to bound T(n) */
fmpr_mul(Tn, Tn, t, wp, FMPR_RND_UP);
/* geometric series termination check */
fmpr_sub(u, one, t, wp, FMPR_RND_DOWN);
if (fmpr_sgn(u) > 0)
{
fmpr_div(u, Tn, u, wp, FMPR_RND_UP);
if (fmpr_cmp(u, tol) < 0)
{
fmpr_set(error, u);
break;
}
}
/* move on to next term */
n++;
}
fmpr_clear(Tn);
fmpr_clear(t);
fmpr_clear(u);
fmpr_clear(one);
fmpr_clear(tol);
fmpr_clear(num);
fmpr_clear(den);
return n;
}