arb/dlog/vec_pindex_factorgcd.c

142 lines
5.3 KiB
C
Raw Normal View History

2016-03-17 17:27:28 +01:00
/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2016 Pascal Molin
******************************************************************************/
#include "dlog.h"
#include <math.h>
2016-03-20 22:32:47 +01:00
#define vbs 1
2016-03-17 17:27:28 +01:00
#define FACTOR_RATIO 4
static int
factor_until(ulong * n, ulong nlim, const ulong * p, ulong pmax, ulong * fp, int * fe)
{
int i, j;
for (i = 0, j = 0; *n >= nlim && p[j] < pmax; j++)
{
int e = n_remove(n, p[j]);
if (e)
{
fp[i] = p[j];
fe[i] = e;
i++;
}
}
return i;
}
ulong
2016-03-20 22:32:47 +01:00
dlog_vec_pindex_factorgcd(ulong * v, ulong nv, ulong p, nmod_t mod, ulong a, ulong na, ulong loga, ulong logm1, nmod_t order, int maxtry)
2016-03-17 17:27:28 +01:00
{
int nm = 0, ng = 0;
ulong pm, logm, pmax;
ulong u[2], r[2], t;
ulong up[15], rp[15];
int ue[15], re[15];
const ulong * prime;
prime = n_primes_arr_readonly(p);
pmax = p / FACTOR_RATIO;
pm = p;
logm = 0;
while (nm++ < maxtry)
{
int i, j, iu, ir;
ulong logr;
pm = nmod_mul(pm, a, mod);
logm = nmod_add(logm, loga, order);
/*
if (2 * pm > mod.n)
{
pm = nmod_neg(pm, mod);
logm = nmod_add(logm, logm1, order);
}
*/
/* half gcd u * pm + v * mod = r, ignore v */
u[0] = 0; r[0] = mod.n;
u[1] = 1; r[1] = pm;
i = 1; j = 0; /* flip flap */
while (r[i] > u[i])
{
ng++;
2016-03-20 22:32:47 +01:00
if (r[i] < nv && v[r[i]] != NOT_FOUND && u[i] < nv && v[u[i]] != NOT_FOUND)
2016-03-17 17:27:28 +01:00
{
/* early smooth detection: occurs for primes < 30 bits */
ulong x;
/* chi(-1)^j*chi(u)*chi(p)*chi(m)=chi(r) */
2016-03-20 22:32:47 +01:00
x = nmod_sub(v[r[i]], nmod_add(v[u[i]], logm, order), order);
2016-03-17 17:27:28 +01:00
if (j)
x = nmod_add(x, logm1, order);
2016-03-20 22:32:47 +01:00
flint_printf("[sieve early] %wu * %wu^%wu = %wu [%wu]\n",
p, a, nm, pm, mod.n);
flint_printf("[sieve early] found %wu * %wu = (-1)^%d*%wu [%wu]\n",
u[i], pm, j, r[i], mod.n);
flint_printf("[sieve early] log(%wu^%wu) = %wu * %wu = %wu [%wu]\n",
a, nm, nm, loga, logm, order.n);
flint_printf("[ on logs] %wu + %wu + log(%wu) = %d * %wu + %wu [%wu]\n",
v[u[i]],logm,p,j,logm1,v[r[i]], order.n);
flint_printf("[ hence ] log(%wu) = %wu\n", p, x);
2016-03-17 17:27:28 +01:00
return x;
}
j = i; i = 1 - i; /* switch */
t = r[i] / r[j];
r[i] = r[i] % r[j];
2016-03-20 22:32:47 +01:00
u[i] = u[i] + t * u[j]; /* times (-1)^j */
2016-03-17 17:27:28 +01:00
};
2016-03-20 22:32:47 +01:00
flint_printf("[sieve factor] %wu * %wu^%wu = %wu [%wu]\n",
p, a, nm, pm, mod.n);
flint_printf("[sieve factor] found %wu * %wu = (-1)^%d*%wu [%wu]\n",
u[i], pm, j, r[i], mod.n);
flint_printf("[sieve factor] logm = %wu [A=%wu,logA=%wu,nm=%wu]\n",
logm,a,loga,nm);
logr = (j) ? logm1 : 0;
flint_printf("[sieve factor] logr = %wu\n",logr);
2016-03-17 17:27:28 +01:00
/* try to factor both r[i] and u[i] */
iu = factor_until(&u[i], nv, prime, pmax, up, ue);
2016-03-20 22:32:47 +01:00
if (u[i] >= nv || v[u[i]] == NOT_FOUND)
2016-03-17 17:27:28 +01:00
continue;
2016-03-20 22:32:47 +01:00
flint_printf("[sieve factor] u: found %d factors up to %wu\n",iu,u[i]);
2016-03-17 17:27:28 +01:00
ir = factor_until(&r[i], nv, prime, pmax, rp, re);
2016-03-20 22:32:47 +01:00
if (r[i] >= nv || v[r[i]] == NOT_FOUND)
2016-03-17 17:27:28 +01:00
continue;
2016-03-20 22:32:47 +01:00
flint_printf("[sieve factor] r: found %d factors up to %wu\n",ir,r[i]);
2016-03-17 17:27:28 +01:00
/* log(u)+log(p)+log(m)=log(r) */
2016-03-20 22:32:47 +01:00
logm = nmod_add(logm, v[u[i]], order);
logr = nmod_add(logr, v[r[i]], order);
2016-03-17 17:27:28 +01:00
for (i=0; i < ir; i++)
2016-03-20 22:32:47 +01:00
logr = nmod_add(logr, (re[i] * v[rp[i]]) % order.n, order);
flint_printf("[sieve factor] logr = %wu\n",logr);
2016-03-17 17:27:28 +01:00
for (i=0; i < iu; i++)
2016-03-20 22:32:47 +01:00
logm = nmod_add(logm, (ue[i] * v[up[i]]) % order.n, order);
flint_printf("[sieve factor] logm = %wu\n",logm);
flint_printf("[sieve factor] log(%wu^%wu) = %wu * %wu = %wu [%wu]\n",
a, nm, nm, loga, logm, order.n);
flint_printf("[ on logs] %wu + log(%wu) = %d * %wu + %wu [%wu]\n",
logm,p,j,logm1, logr, order.n);
flint_printf("[ hence ] log(%wu) = %wu\n", p, nmod_sub(logr, logm, order));
2016-03-17 17:27:28 +01:00
return nmod_sub(logr, logm, order);
}
return NOT_FOUND;
}