arb/arb_hypgeom/airy_zero.c

270 lines
8.1 KiB
C
Raw Normal View History

2018-07-27 14:30:01 -04:00
/*
Copyright (C) 2018 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "arb_hypgeom.h"
/*
https://dlmf.nist.gov/9.9
a_k ~ -T(3/8 pi (4k-1))
a'_k ~ -U(3/8 pi (4k-3))
b_k ~ -T(3/8 pi (4k-3))
b'_k ~ -U(3/8 pi (4k-1))
For a_k and b_k, the u^8 and u^10 truncations are known to give lower
bounds. [G. Pittaluga and L. Sacripante (1991) Inequalities for the
zeros of the Airy functions. SIAM J. Math. Anal. 22 (1), pp. 260267.]
We don't have proofs for a'_k and b'_k. However, in that case, we can just
do a single interval Newton step to verify that we have isolated a
zero (the enclosure must be for the correct zero due to sandwiching).
*/
#define AI 0
#define BI 1
#define AI_PRIME 2
#define BI_PRIME 3
static const double initial[4][10] = {{
-658118728906175.0,-1150655474581104.0,-1553899449042978.0,-1910288501594969.0,
-2236074816421182.0,-2539650438812533.0,-2826057838960988.0,
-3098624122012011.0,-3359689702679955.0,-3610979637739094.0},{
-330370902027041.0,-920730911234245.0,-1359731821477101.0,-1736658984124319.0,
-2076373934490092.0,-2390271103799312.0,-2684763040788193.0,
-2963907159065113.0,-3230475233555475.0,-3486466475611047.0},{
-286764727967452.0,-914286338795679.0,-1356737313209586.0,-1734816794389239.0,
-2075083421171399.0,-2389296605766914.0,-2683990299959380.0,
-2963272965051282.0,-3229941298662311.0,-3486008018531685.0},{
-645827356227815.0,-1146491233835383.0,-1551601459626981.0,-1908764696253222.0,
-2234961611612173.0,-2538787015856429.0,-2825360342097020.0,
-3098043823061022.0,-3359196018589429.0,-3610552233837226.0,
}};
void
_arb_hypgeom_airy_zero(arb_t res, const fmpz_t n, int which, slong prec)
{
slong asymp_accuracy, wp;
if (fmpz_cmp_ui(n, 10) <= 0)
{
if (fmpz_sgn(n) <= 0)
{
flint_printf("Airy zero only defined for index >= 1\n");
flint_abort();
}
/* The asymptotic expansions work well except when n == 1, so
use precomputed starting intervals (also for the first
few larger n as a small optimization). */
arf_set_d(arb_midref(res), ldexp(initial[which][fmpz_get_ui(n)-1], -48));
mag_set_d(arb_radref(res), ldexp(1.0, -48));
asymp_accuracy = 48;
}
else
{
arb_t z, u, u2, u4, s;
fmpz_t c;
arb_init(z);
arb_init(u);
arb_init(u2);
arb_init(u4);
arb_init(s);
fmpz_init(c);
if (which == AI || which == BI_PRIME)
asymp_accuracy = 13 + 10 * (fmpz_bits(n) - 1);
else
{
fmpz_sub_ui(c, n, 1);
asymp_accuracy = 13 + 10 * (fmpz_bits(c) - 1);
}
wp = asymp_accuracy + 8;
/* Reduce precision since we may not need to do any Newton steps. */
if (which == AI || which == BI)
wp = FLINT_MIN(wp, prec + 8);
arb_const_pi(z, wp);
fmpz_mul_2exp(c, n, 2);
if (which == AI || which == BI_PRIME)
fmpz_sub_ui(c, c, 1);
else
fmpz_sub_ui(c, c, 3);
fmpz_mul_ui(c, c, 3);
arb_mul_fmpz(z, z, c, wp);
arb_mul_2exp_si(z, z, -3);
arb_inv(u, z, wp);
arb_mul(u2, u, u, wp);
arb_mul(u4, u2, u2, wp);
if (which == AI || which == BI)
{
/* u^8 truncation gives lower bound */
arb_mul_si(s, u4, -108056875, wp);
arb_addmul_si(s, u2, 6478500, wp);
arb_add_si(s, s, -967680, wp);
arb_mul(s, s, u4, wp);
arb_addmul_si(s, u2, 725760, wp);
arb_div_ui(s, s, 6967296, wp);
/* u^10 term gives upper bound */
arb_mul(u4, u4, u4, 10);
arb_mul(u4, u4, u2, 10);
arb_mul_ui(u4, u4, 486, 10);
}
else
{
/* u^8 truncation gives upper bound */
arb_mul_si(s, u4, 18683371, wp);
arb_addmul_si(s, u2, -1087338, wp);
arb_add_si(s, s, 151200, wp);
arb_mul(s, s, u4, wp);
arb_addmul_si(s, u2, -181440, wp);
arb_div_ui(s, s, 1244160, wp);
/* u^10 term gives lower bound */
arb_mul(u4, u4, u4, 10);
arb_mul(u4, u4, u2, 10);
arb_mul_ui(u4, u4, 477, 10);
arb_neg(u4, u4);
}
arb_mul_2exp_si(u4, u4, -1);
arb_add(s, s, u4, wp);
arb_add_error(s, u4);
arb_add_ui(s, s, 1, wp);
arb_root_ui(z, z, 3, wp);
arb_mul(z, z, z, wp);
arb_mul(res, z, s, wp);
arb_neg(res, res);
arb_clear(z);
arb_clear(u);
arb_clear(u2);
arb_clear(u4);
arb_clear(s);
fmpz_clear(c);
}
/* Do interval Newton steps for refinement. Important: for the
primed zeros, we need to do at least one interval Newton step to
validate the initial (tentative) inclusion. */
if (asymp_accuracy < prec || (which == AI_PRIME || which == BI_PRIME))
{
arb_t f, fprime, root;
mag_t C, r;
slong * steps;
slong step, extraprec;
arb_init(f);
arb_init(fprime);
arb_init(root);
mag_init(C);
mag_init(r);
steps = flint_malloc(sizeof(slong) * FLINT_BITS);
extraprec = 0.25 * fmpz_bits(n) + 8;
wp = asymp_accuracy + extraprec;
/* C = |f''| or |f'''| on the initial interval given by res */
/* f''(x) = xf(x) */
/* f'''(x) = xf'(x) + f(x) */
if (which == AI || which == AI_PRIME)
arb_hypgeom_airy(f, fprime, NULL, NULL, res, wp);
else
arb_hypgeom_airy(NULL, NULL, f, fprime, res, wp);
if (which == AI || which == BI)
arb_mul(f, f, res, wp);
else
arb_addmul(f, fprime, res, wp);
arb_get_mag(C, f);
step = 0;
steps[step] = prec;
while (steps[step] / 2 > asymp_accuracy - extraprec)
{
steps[step + 1] = steps[step] / 2;
step++;
}
arb_set(root, res);
for ( ; step >= 0; step--)
{
wp = steps[step] + extraprec;
wp = FLINT_MAX(wp, arb_rel_accuracy_bits(root) + extraprec);
/* store radius, set root to the midpoint */
mag_set(r, arb_radref(root));
mag_zero(arb_radref(root));
if (which == AI || which == AI_PRIME)
arb_hypgeom_airy(f, fprime, NULL, NULL, root, wp);
else
arb_hypgeom_airy(NULL, NULL, f, fprime, root, wp);
/* f, f' = f', xf */
if (which == AI_PRIME || which == BI_PRIME)
{
arb_mul(f, f, root, wp);
arb_swap(f, fprime);
}
/* f'([m+/-r]) = f'(m) +/- f''([m +/- r]) * r */
mag_mul(r, C, r);
arb_add_error_mag(fprime, r);
arb_div(f, f, fprime, wp);
arb_sub(root, root, f, wp);
/* Verify inclusion so that C is still valid, and for the
primed zeros also to make sure that the initial
intervals really were correct. */
if (!arb_contains(res, root))
{
flint_printf("unexpected: no containment of Airy zero\n");
arb_indeterminate(root);
break;
}
}
arb_set(res, root);
arb_clear(f);
arb_clear(fprime);
arb_clear(root);
mag_clear(C);
mag_clear(r);
flint_free(steps);
}
arb_set_round(res, res, prec);
}
void
arb_hypgeom_airy_zero(arb_t ai, arb_t aip, arb_t bi, arb_t bip, const fmpz_t n, slong prec)
{
if (ai != NULL)
_arb_hypgeom_airy_zero(ai, n, AI, prec);
if (aip != NULL)
_arb_hypgeom_airy_zero(aip, n, AI_PRIME, prec);
if (bi != NULL)
_arb_hypgeom_airy_zero(bi, n, BI, prec);
if (bip != NULL)
_arb_hypgeom_airy_zero(bip, n, BI_PRIME, prec);
}