arb/fmpcb_poly/compose_series_brent_kung.c

136 lines
3.9 KiB
C
Raw Normal View History

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Fredrik Johansson
******************************************************************************/
#include "fmpcb_poly.h"
#include "fmpcb_mat.h"
void
_fmpcb_poly_compose_series_brent_kung(fmpcb_ptr res,
fmpcb_srcptr poly1, long len1,
fmpcb_srcptr poly2, long len2, long n, long prec)
{
fmpcb_mat_t A, B, C;
fmpcb_ptr t, h;
long i, m;
if (n == 1)
{
fmpcb_set(res, poly1);
return;
}
m = n_sqrt(n) + 1;
fmpcb_mat_init(A, m, n);
fmpcb_mat_init(B, m, m);
fmpcb_mat_init(C, m, n);
h = _fmpcb_vec_init(n);
t = _fmpcb_vec_init(n);
/* Set rows of B to the segments of poly1 */
for (i = 0; i < len1 / m; i++)
_fmpcb_vec_set(B->rows[i], poly1 + i*m, m);
_fmpcb_vec_set(B->rows[i], poly1 + i*m, len1 % m);
/* Set rows of A to powers of poly2 */
fmpcb_set_ui(A->rows[0] + 0, 1UL);
_fmpcb_vec_set(A->rows[1], poly2, len2);
for (i = 2; i < m; i++)
_fmpcb_poly_mullow(A->rows[i], A->rows[(i + 1) / 2], n, A->rows[i / 2], n, n, prec);
fmpcb_mat_mul(C, B, A, prec);
/* Evaluate block composition using the Horner scheme */
_fmpcb_vec_set(res, C->rows[m - 1], n);
_fmpcb_poly_mullow(h, A->rows[m - 1], n, poly2, len2, n, prec);
for (i = m - 2; i >= 0; i--)
{
_fmpcb_poly_mullow(t, res, n, h, n, n, prec);
_fmpcb_poly_add(res, t, n, C->rows[i], n, prec);
}
_fmpcb_vec_clear(h, n);
_fmpcb_vec_clear(t, n);
fmpcb_mat_clear(A);
fmpcb_mat_clear(B);
fmpcb_mat_clear(C);
}
void
fmpcb_poly_compose_series_brent_kung(fmpcb_poly_t res,
const fmpcb_poly_t poly1,
const fmpcb_poly_t poly2, long n, long prec)
{
long len1 = poly1->length;
long len2 = poly2->length;
long lenr;
if (len2 != 0 && !fmpcb_is_zero(poly2->coeffs))
{
printf("exception: compose_series: inner "
"polynomial must have zero constant term\n");
abort();
}
if (len1 == 0 || n == 0)
{
fmpcb_poly_zero(res);
return;
}
if (len2 == 0 || len1 == 1)
{
fmpcb_poly_set_fmpcb(res, poly1->coeffs);
return;
}
lenr = FLINT_MIN((len1 - 1) * (len2 - 1) + 1, n);
len1 = FLINT_MIN(len1, lenr);
len2 = FLINT_MIN(len2, lenr);
if ((res != poly1) && (res != poly2))
{
fmpcb_poly_fit_length(res, lenr);
_fmpcb_poly_compose_series_brent_kung(res->coeffs, poly1->coeffs, len1,
poly2->coeffs, len2, lenr, prec);
_fmpcb_poly_set_length(res, lenr);
_fmpcb_poly_normalise(res);
}
else
{
fmpcb_poly_t t;
fmpcb_poly_init2(t, lenr);
_fmpcb_poly_compose_series_brent_kung(t->coeffs, poly1->coeffs, len1,
poly2->coeffs, len2, lenr, prec);
_fmpcb_poly_set_length(t, lenr);
_fmpcb_poly_normalise(t);
fmpcb_poly_swap(res, t);
fmpcb_poly_clear(t);
}
}