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1. Task 1

1 Task 1

1.1 Part (1)
In the given data were two out of 26 data points with an Al/Be ratio of more than 4.5. That means
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1.2 Part (2)

Using the following formula from the lecture we get the 95% confidence interval:
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Our 95% confidence interval is [-0.0276,0.1814] which means that we are 95% sure that the true propor-
tion lies between -0.0276 and 0.1814.

1.3 Part (3)

To get the 95% confidence interval via bootstrap I want to use the bootci function in MATLAB.

data = [3.75, 4.05, 3.81, 3.23, 3.13, 3.3, 3.21, 3.32,
4.09, 3.9, 5.06, 3.85, 3.88, 4.06, 4.56, 3.6, 3.27,
4.09, 3.38, 3.37, 2.73, 2.95, 2.25, 2.73, 2.55, 3.06];
parameter = @(y) length(find(y > 4.5))/length(y);

bootci (10000,{parameter, datal},’alpha’,0.05, type’,...
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’percentile’)

That gives the 95% confidence interval: [0,0.1923]

1.4 Part (4)

Yes, the confidence interval from the bootstrap procedure is more appropriate because it’s not containing
Al/Be ratios that are not possible like -0.0276. A negative ratio would suggest that there is a negative

amount of data points in the sample which exceed 4.5. That is not possible.




2. Task 2

2 Task 2
2.1 Part (1)
i x = [-4.5, -1, -0.5, -0.15, 0, 0.01, 0.02, 0.05,
2 0.15, 0.2, 0.5, 0.5, 1, 2, 3];
3 m = mean(x);
4 s = std(x);
null hypothesis Hy: p=0
alternative hypothesis Ha: p#0
t-test for u t =m0 — 00853 — ().2062
V15 15
rejection region tinv(0.05,15) = -1.7531
conclusion t is not in the rejection region so Hy is accep-
ted at the 10% significance level.
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2.2 Part (2)

If we reduce the significance level our rejection region gets smaller. With a = 0.05 the rejection region

will start at tinv(0.025,15) =-2.1314. The ¢ calculated in part (1) won’t change = our decision won’t

change too.

To get the type 2 error we use the MATL

testtype t7;
pO [0 1.6031]
pi 0.0853;

n 15;

power

1
2
3
4 =
5 =

AB function sampsizepwr and type?2error =1 — power.

)

sampsizepwr (testtype,pO,pl,[],n)
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2. Task 2

This gives power = 0.0542 = type 2 error = 0.9458. This is the probability of wrongly accepting Hy

when it is false.

2.3 Part (3)

Hy: =0, normal distribution, small model Mg
Hy4: p# 0, normal distribution, big model Mp
The log-likelihood function for normal distribution is

n
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Let’s start with the MLEs for 4 and o in Mp:
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Maximum possible value for the log-likelihood g':(:% -27.8457.
Now we’ll calculate the MLE for ¢ in Mg:

Jj=1
= 2.3986

Maximum possible value for the log-likelihood g& -27.8684.
Likelihood ratio test:

¥ = 2(1(Mp) — (M)
= 0.0454
It should be compared to x2(1 degree of freedom) since the difference in unknown parameters is equal
to 1. The following piece of MATLAB code will calculate the p-value.
1 p = chi2cdf (0.0454,1, upper’)

The p-value is 0.8313 which means that we accept Hp: The small model Mg fits the data good enough.

This is the same result as in part (1) and (2).
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3 Task 3

3.1 Part (1)

First of all we need to prepare the data:

1 raw = load(’input_data.txt’);

2 data = reshape(raw,[1 500]);
After that we do for every distribution (normal, exponential, uniform, lognormal, RAYLEIGH, gamma)
the same procedure:

1. Estimate the parameter. This is often done with the function <distribution>fit but for es-
timating the parameters in the gamma distribution I used fitdist(data’, ’Gamma’) because

gamfit doesn’t work.
2. Creating the CDF with makedist.

3. Run the KOLMOGOROV-SMIRNOV test with kstest.

1

2 [mu,sigmal = normfit(data)

3 mnorm_cdf = makedist(’Normal’,’mu’,mu,’sigma’,sigma);
4 [h,p] = kstest(data,’CDF’,norm_cdf)

5

6

7 mu = expfit(data)

8 exp_cdf = makedist (’Exponential’,’mu’ ,mu);

9 [h,p] = kstest(data,’CDF’,exp_cdf)

10

11

12 [low,up] = unifit(data)

13 uni_cdf = makedist(’Uniform’,’lower’,low,’upper’,up);
14 [h,p] = kstest(data,’CDF’,uni_cdf)

15

16

17 logmu = mean(log(data))

18 logsigma = std(log(data))

19 logn_cdf = makedist(’Lognormal’,’mu’,logmu,’sigma’,logsigma);
20 [h,p] = kstest(data,’CDF’,logn_cdf)

21

22

23 b = raylfit(data)

24 rayl_cdf = makedist(’Rayleigh’,’b’,b);

25 [h,p] = kstest(data,’CDF’,rayl_cdf)

26

27




3. Task 3

28 distribution = fitdist(data’,’Gamma’);

29 a = distribution.a

30 b = distribution.b

31 gamma_cdf = makedist(’Gamma’,’a’,a,’b’,b);
32 [h,p] = kstest(data,’CDF’,gamma_cdf)

Running this gives the following output. The best fitting distribution is marked green, the worst red.

distribution | estimated parameters KOLMOGOROV-SMIRNOV test
h p
normal w=2.3804, o0 = 1.2486 h=1 p = 0.0158
exponential | p = 2.3804 h=1 p=2.2618-10"%
lognormal log(p) = 0.7050, log(c) = 0.6243 | h =1 p=0.0017
gamma a = 3.2378, b = 0.7352 h=0 p=0.2771

3.2 Part (2)
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4. Task 4

4 Task 4

4.1 Part (1)

The probability density function f(¢) is

After the PDF was changed we have
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The cumulative distribution function F'(t) is then
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For the survival function we get
R(t)=1—-F(t)
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5 10 15 20
To get the reliability of the component at ¢ = 7 we simply evaluate R(7) which is 0.9999 (0.6126).

The hazard function is defined as
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The hazard function describes how an item ages where ¢ affects the risk of failure. It is the frequency

with which the item fails, expressed in failures per unit of time.

4.2 Part (2)

Given h(x) ~ (v/x)~! we will try to find out the shape-parameter of the WEIBULL distribution first.
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4. Task 4

Comparing this graph to graphs of the hazard function with different shape-parameters we see that
shape = 0.5 fits best.

shape = 0.5 shape =1 shape = 2
: _ _PDF
Hazard function (h = 1—CDF)
14 1 1+
Yy Yy Yy
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2

To get the scale-parameter of the distribution we use the other provided information:

S=p
1
= scale - T (1 + )
shape
= scale - T'(3)
= scale = =

Let’s build the survival function:

R(t)=1- <1—exp(— ;))

= exp(—V/z - V2.5)

That mean that the probability of surviving 6 years (30 years) is R(6) = 0.0208 (R(30) = 0.0002).
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