mirror of
https://github.com/vale981/TUD_MATH_BA
synced 2025-03-06 01:51:38 -05:00
started App. Stats cousework
This commit is contained in:
parent
30508fccaf
commit
e0a437dd4a
3 changed files with 220 additions and 1 deletions
|
@ -2,7 +2,7 @@
|
|||
\usepackage{mathoperators}
|
||||
|
||||
\title{\textbf{Applied statistics (spring term 2019)}}
|
||||
\author{readers: \person{Nikolai Bode} and \person{Ksenia Shalonova}}
|
||||
\author{readers: Dr \person{Nikolai Bode} and Dr \person{ Ksenia Shalonova}}
|
||||
\date{written by \person{Henry Haustein}}
|
||||
|
||||
\begin{document}
|
||||
|
|
BIN
Erasmus/Applied statistics/Coursework 1.pdf
Normal file
BIN
Erasmus/Applied statistics/Coursework 1.pdf
Normal file
Binary file not shown.
219
Erasmus/Applied statistics/Coursework 1.tex
Normal file
219
Erasmus/Applied statistics/Coursework 1.tex
Normal file
|
@ -0,0 +1,219 @@
|
|||
\documentclass[british,a4paper,order=firstname]{mathscript}
|
||||
\usepackage{mathoperators}
|
||||
|
||||
\title{\textbf{Applied statistics: Coursework 1}}
|
||||
\author{\person{Henry Haustein}}
|
||||
|
||||
\begin{document}
|
||||
\pagenumbering{roman}
|
||||
\pagestyle{plain}
|
||||
|
||||
\maketitle
|
||||
|
||||
\hypertarget{tocpage}{}
|
||||
\tableofcontents
|
||||
\bookmark[dest=tocpage,level=1]{Table of contents}
|
||||
|
||||
\pagebreak
|
||||
\pagenumbering{arabic}
|
||||
\pagestyle{fancy}
|
||||
|
||||
\section{Task 1}
|
||||
\subsection{Part (1)}
|
||||
|
||||
\subsection{Part (2)}
|
||||
|
||||
\subsection{Part (3)}
|
||||
|
||||
\subsection{Part (4)}
|
||||
|
||||
\pagebreak
|
||||
\section{Task 2}
|
||||
\subsection{Part (1)}
|
||||
|
||||
\subsection{Part (2)}
|
||||
|
||||
\subsection{Part (3)}
|
||||
|
||||
\pagebreak
|
||||
\section{Task 3}
|
||||
\subsection{Part (1)}
|
||||
|
||||
\subsection{Part (2)}
|
||||
|
||||
\pagebreak
|
||||
\section{Task 4}
|
||||
\subsection{Part (1)}
|
||||
The probability density function $f(t)$ is
|
||||
\begin{align}
|
||||
f(t) = \frac{2t\cdot\frac{\exp(-t^2)}{100}}{100} = \frac{t\cdot\exp(-t^2)}{5000}\notag
|
||||
\end{align}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=5, xlabel=$x$,
|
||||
ymin=0, ymax=0.0001, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
]
|
||||
\addplot+[mark=none] {(x*exp(-x^2))/5000};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
The cumulative distribution function $F(t)$ is then
|
||||
\begin{align}
|
||||
F(t) &= \int_0^t f(\xi)\,\diff\xi \notag \\
|
||||
&= \int_0^t \frac{\xi\cdot\exp(-\xi^2)}{5000}\,\diff\xi\notag \\
|
||||
&= \frac{\exp(-t^2)\Big(\exp(t^2)-1\Big)}{10000} \notag
|
||||
\end{align}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=5, xlabel=$x$,
|
||||
ymin=0, ymax=0.0001, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
]
|
||||
\addplot+[mark=none] {(exp(-x^2)*(exp(x^2)-1))/10000};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
For the survival function we get
|
||||
\begin{align}
|
||||
R(t) &= 1 - F(t) \notag \\
|
||||
&= \frac{\exp(-t^2)+9999}{10000} \notag
|
||||
\end{align}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=5, xlabel=$x$,
|
||||
ymin=0, ymax=1, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
]
|
||||
\addplot+[mark=none] {(exp(-x^2)+9999)/10000};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=5, xlabel=$x$,
|
||||
ymin=0.9999, ymax=1, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
y tick label style={
|
||||
/pgf/number format/.cd,
|
||||
precision=5,
|
||||
/tikz/.cd
|
||||
},
|
||||
]
|
||||
\addplot+[mark=none] {(exp(-x^2)+9999)/10000};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
To get the reliability of the component at $t=7$ we simply evaluate $R(7)$ which is 0.9999.
|
||||
|
||||
The hazard function is defined as
|
||||
\begin{align}
|
||||
h(t) &= \frac{f(t)}{1-F(t)} \notag \\
|
||||
&= \frac{2t}{9999\cdot \exp(t^2)+1} \notag
|
||||
\end{align}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=5, xlabel=$x$,
|
||||
ymin=0, ymax=0.0001, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
]
|
||||
\addplot+[mark=none] {(2*x)/(9999*exp(x^2)+1)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
The hazard function describes how an item ages where $t$ affects the risk of failure. It is the frequency with which the item fails, expressed in failures per unit of time.
|
||||
|
||||
\subsection{Part (2)}
|
||||
Given $h(x)\sim(\sqrt{x})^{-1}$ we will try to find out the $shape$-parameter of the \person{Weibull} distribution first.
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=5, xlabel=$x$,
|
||||
ymin=0, ymax=1, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
yticklabels={,,},
|
||||
xticklabels={,,}
|
||||
]
|
||||
\addplot+[mark=none] {1/sqrt(x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Comparing this graph to graphs of the hazard function with different $shape$-parameters we see that $shape=0.5$ fits best.
|
||||
\begin{center}
|
||||
\begin{tabular}{p{5cm}|p{5cm}|p{5cm}}
|
||||
$shape = 0.5$ & $shape = 1$ & $shape = 2$ \\
|
||||
\hline
|
||||
\multicolumn{3}{c}{\cellcolor{gray!50}\textbf{Hazard function} $\left(h = \frac{\text{PDF}}{1-\text{CDF}}\right)$} \\
|
||||
\hline
|
||||
\begin{tikzpicture}[scale=0.6]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=2, xlabel=$x$,
|
||||
ymin=0, ymax=1, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
]
|
||||
\addplot+[mark=none] {(0.5*x^(-0.5)*exp(-x^0.5))/(1-(1-exp(-x^0.5)))};
|
||||
\end{axis}
|
||||
\end{tikzpicture} &
|
||||
\begin{tikzpicture}[scale=0.6]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=2, xlabel=$x$,
|
||||
ymin=0, ymax=1, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
]
|
||||
\addplot+[mark=none] {(1/exp(x))/(1-(1-1/exp(x)))};
|
||||
\draw[blue] (axis cs: 0,1) -- (axis cs: 2,1);
|
||||
\end{axis}
|
||||
\end{tikzpicture} &
|
||||
\begin{tikzpicture}[scale=0.6]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=2, xlabel=$x$,
|
||||
ymin=0, ymax=1, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
]
|
||||
\addplot+[mark=none] {(2*x^(1)*exp(-x^2))/(1-(1-exp(-x^2)))};
|
||||
\end{axis}
|
||||
\end{tikzpicture} \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
To get the $scale$-parameter of the distribution we use the other provided information:
|
||||
\begin{align}
|
||||
5 &= \mu \notag \\
|
||||
&= scale\cdot\Gamma\left(1+\frac{1}{shape}\right) \notag \\
|
||||
&= scale\cdot\Gamma(3) \notag \\
|
||||
\Rightarrow scale &= \frac{5}{2} \notag
|
||||
\end{align}
|
||||
Let's build the survival function:
|
||||
\begin{align}
|
||||
R(t) &= 1-\Bigg(1-\exp\left(-\sqrt{\frac{x}{\nicefrac{5}{2}}}\right)\Bigg) \notag \\
|
||||
&= \exp(-\sqrt{x}\cdot\sqrt{2.5})\notag
|
||||
\end{align}
|
||||
That mean that the probability of surviving 6 years (30 years) is $R(6) = 0.0208$ ($R(30) = 0.0002$).
|
||||
\end{document}
|
Loading…
Add table
Reference in a new issue