mirror of
https://github.com/vale981/TUD_MATH_BA
synced 2025-03-04 17:21:38 -05:00
App. Stats.: Funktion noch mal geändert
This commit is contained in:
parent
2bd421e449
commit
51655b7617
2 changed files with 75 additions and 4 deletions
Binary file not shown.
|
@ -236,8 +236,12 @@ The probability density function $f(t)$ is
|
|||
\begin{align}
|
||||
f(t) = \frac{2t\cdot\frac{\exp(-t^2)}{100}}{100} = \frac{t\cdot\exp(-t^2)}{5000}\notag
|
||||
\end{align}
|
||||
\textcolor{red}{After the PDF was changed we have}
|
||||
{\color{red}\begin{align}
|
||||
f(t) = \frac{2t\cdot\exp\left(\frac{-t^2}{100} \right) }{100} \notag
|
||||
\end{align}}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=5, xlabel=$x$,
|
||||
ymin=0, ymax=0.0001, ylabel=$y$,
|
||||
|
@ -249,6 +253,19 @@ The probability density function $f(t)$ is
|
|||
\addplot+[mark=none] {(x*exp(-x^2))/5000};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=20, xlabel=$x$,
|
||||
ymin=0, ymax=0.2, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
domain=0:20
|
||||
]
|
||||
\addplot+[mark=none, color=red] {(2*x*exp(-x^2/100))/100};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
The cumulative distribution function $F(t)$ is then
|
||||
\begin{align}
|
||||
|
@ -256,8 +273,13 @@ The cumulative distribution function $F(t)$ is then
|
|||
&= \int_0^t \frac{\xi\cdot\exp(-\xi^2)}{5000}\,\diff\xi\notag \\
|
||||
&= \frac{\exp(-t^2)\Big(\exp(t^2)-1\Big)}{10000} \notag
|
||||
\end{align}
|
||||
{\color{red}\begin{align}
|
||||
F(t) &= \int_0^t f(\xi)\,\diff\xi \notag \\
|
||||
&= \int_0^t \frac{2\xi\cdot\exp\left(\frac{-\xi^2}{100} \right) }{100}\,\diff\xi \notag \\
|
||||
&= 1-\exp\left(\frac{-t^2}{100} \right) \notag
|
||||
\end{align}}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=5, xlabel=$x$,
|
||||
ymin=0, ymax=0.0001, ylabel=$y$,
|
||||
|
@ -269,12 +291,29 @@ The cumulative distribution function $F(t)$ is then
|
|||
\addplot+[mark=none] {(exp(-x^2)*(exp(x^2)-1))/10000};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=20, xlabel=$x$,
|
||||
ymin=0, ymax=1, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
domain=0:20
|
||||
]
|
||||
\addplot+[mark=none,color=red] {1-exp(-x^2/100)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
For the survival function we get
|
||||
\begin{align}
|
||||
R(t) &= 1 - F(t) \notag \\
|
||||
&= \frac{\exp(-t^2)+9999}{10000} \notag
|
||||
\end{align}
|
||||
{\color{red}\begin{align}
|
||||
R(t) &= 1-F(t) \notag \\
|
||||
&= \exp\left(\frac{-t^2}{100} \right) \notag
|
||||
\end{align}}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\begin{axis}[
|
||||
|
@ -306,15 +345,34 @@ For the survival function we get
|
|||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
To get the reliability of the component at $t=7$ we simply evaluate $R(7)$ which is 0.9999.
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=20, xlabel=$x$,
|
||||
ymin=0, ymax=1, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
domain=0:20
|
||||
]
|
||||
\addplot+[mark=none,color=red] {exp(-x^2/100)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
To get the reliability of the component at $t=7$ we simply evaluate $R(7)$ which is 0.9999 \textcolor{red}{(0.6126)}.
|
||||
|
||||
The hazard function is defined as
|
||||
\begin{align}
|
||||
h(t) &= \frac{f(t)}{1-F(t)} \notag \\
|
||||
&= \frac{2t}{9999\cdot \exp(t^2)+1} \notag
|
||||
\end{align}
|
||||
{\color{red}\begin{align}
|
||||
h(t) &= \frac{f(t)}{1-F(t)} \notag \\
|
||||
&= \frac{t}{50} \notag
|
||||
\end{align}}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=5, xlabel=$x$,
|
||||
ymin=0, ymax=0.0001, ylabel=$y$,
|
||||
|
@ -326,6 +384,19 @@ The hazard function is defined as
|
|||
\addplot+[mark=none] {(2*x)/(9999*exp(x^2)+1)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\begin{tikzpicture}[scale=0.9]
|
||||
\begin{axis}[
|
||||
xmin=0, xmax=20, xlabel=$x$,
|
||||
ymin=0, ymax=1, ylabel=$y$,
|
||||
samples=400,
|
||||
axis y line=middle,
|
||||
axis x line=middle,
|
||||
restrict y to domain=0:1,
|
||||
domain=0:20
|
||||
]
|
||||
\addplot+[mark=none,color=red] {x/50};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
The hazard function describes how an item ages where $t$ affects the risk of failure. It is the frequency with which the item fails, expressed in failures per unit of time.
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue