mirror of
https://github.com/vale981/Rerervoir-Engineering
synced 2025-03-04 09:11:42 -05:00
add beginnings of report
This commit is contained in:
parent
71797762af
commit
fb73eed75f
10 changed files with 3210 additions and 0 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -414,3 +414,4 @@ $RECYCLE.BIN/
|
|||
|
||||
## Acknowledgements
|
||||
# Many thanks to `https://gitignore.io/`, written and maintained by Joe Blau, which contributed much material to this gitignore file.
|
||||
/.direnv/
|
||||
|
|
1
papers/Report/.envrc
Normal file
1
papers/Report/.envrc
Normal file
|
@ -0,0 +1 @@
|
|||
use flake
|
3
papers/Report/.gitignore
vendored
Normal file
3
papers/Report/.gitignore
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
output
|
||||
auto
|
||||
.direnv
|
42
papers/Report/flake.lock
generated
Normal file
42
papers/Report/flake.lock
generated
Normal file
|
@ -0,0 +1,42 @@
|
|||
{
|
||||
"nodes": {
|
||||
"flake-utils": {
|
||||
"locked": {
|
||||
"lastModified": 1676283394,
|
||||
"narHash": "sha256-XX2f9c3iySLCw54rJ/CZs+ZK6IQy7GXNY4nSOyu2QG4=",
|
||||
"owner": "numtide",
|
||||
"repo": "flake-utils",
|
||||
"rev": "3db36a8b464d0c4532ba1c7dda728f4576d6d073",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "numtide",
|
||||
"repo": "flake-utils",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1678380223,
|
||||
"narHash": "sha256-HUxnK38iqrX84QdQxbFcosRKV3/koj1Zzp5b5aP4lIo=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "1e2590679d0ed2cee2736e8b80373178d085d263",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"id": "nixpkgs",
|
||||
"ref": "nixos-unstable",
|
||||
"type": "indirect"
|
||||
}
|
||||
},
|
||||
"root": {
|
||||
"inputs": {
|
||||
"flake-utils": "flake-utils",
|
||||
"nixpkgs": "nixpkgs"
|
||||
}
|
||||
}
|
||||
},
|
||||
"root": "root",
|
||||
"version": 7
|
||||
}
|
50
papers/Report/flake.nix
Normal file
50
papers/Report/flake.nix
Normal file
|
@ -0,0 +1,50 @@
|
|||
{
|
||||
description = "Typesetting for Report on the Reservoir Engineering";
|
||||
inputs = {
|
||||
nixpkgs.url = "nixpkgs/nixos-unstable";
|
||||
flake-utils.url = "github:numtide/flake-utils";
|
||||
};
|
||||
|
||||
outputs = { self, nixpkgs, flake-utils }:
|
||||
with flake-utils.lib; eachSystem allSystems (system:
|
||||
let
|
||||
pkgs = nixpkgs.legacyPackages.${system};
|
||||
tex = pkgs.texlive.combine {
|
||||
inherit (pkgs.texlive) scheme-medium latexmk koma-script babel-english
|
||||
physics mathtools amsmath fontspec booktabs siunitx caption biblatex float
|
||||
pgfplots microtype fancyvrb csquotes setspace newunicodechar hyperref
|
||||
cleveref multirow bbold unicode-math biblatex-phys xpatch beamerposter
|
||||
type1cm changepage lualatex-math footmisc wrapfig2 curve2e pict2e wrapfig
|
||||
appendixnumberbeamer sidecap appendix orcidlink ncctools bigfoot crop xcolor;
|
||||
};
|
||||
in
|
||||
rec {
|
||||
packages = {
|
||||
document = pkgs.stdenvNoCC.mkDerivation rec {
|
||||
name = "maxwell_time_scale_separation";
|
||||
src = self;
|
||||
buildInputs = [ pkgs.coreutils tex pkgs.biber ];
|
||||
phases = [ "unpackPhase" "buildPhase" "installPhase" ];
|
||||
buildPhase = ''
|
||||
export PATH="${pkgs.lib.makeBinPath buildInputs}";
|
||||
mkdir -p .cache/texmf-var
|
||||
mkdir -p output/src
|
||||
env TEXMFHOME=.cache TEXMFVAR=.cache/texmf-var \
|
||||
OSFONTDIR=${pkgs.tex-gyre-math.pagella}/share/fonts/opentype:${pkgs.gyre-fonts}/share/fonts:${pkgs.liberation_ttf}/share/fonts:${pkgs.lato}/share/fonts/lato:${pkgs.raleway}/share/fonts:${pkgs.lmodern}/share/fonts \
|
||||
latexmk ./index.tex
|
||||
'';
|
||||
installPhase = ''
|
||||
mkdir -p $out
|
||||
cp output/index.pdf $out/
|
||||
'';
|
||||
};
|
||||
};
|
||||
defaultPackage = packages.document;
|
||||
devShell = pkgs.mkShellNoCC {
|
||||
buildInputs = packages.document.buildInputs;
|
||||
shellHook = ''
|
||||
export OSFONTDIR=${pkgs.tex-gyre-math.pagella}/share/fonts/opentype:${pkgs.gyre-fonts}/share/fonts:${pkgs.liberation_ttf}/share/fonts:${pkgs.lato}/share/fonts/lato:${pkgs.raleway}/share/fonts:${pkgs.lmodern}/share/fonts
|
||||
'';
|
||||
};
|
||||
});
|
||||
}
|
179
papers/Report/hiromacros.sty
Normal file
179
papers/Report/hiromacros.sty
Normal file
|
@ -0,0 +1,179 @@
|
|||
\ProvidesPackage{hiromacros}
|
||||
\RequirePackage{ifdraft}
|
||||
|
||||
% Macros
|
||||
|
||||
%% qqgg
|
||||
\newcommand{\qqgg}[0]{q\bar{q}\rightarrow\gamma\gamma}
|
||||
|
||||
%% ppgg
|
||||
\newcommand{\ppgg}[0]{pp\rightarrow\gamma\gamma}
|
||||
|
||||
%% Momenta and Polarization Vectors convenience
|
||||
\DeclareMathOperator{\ps}{\slashed{p}}
|
||||
|
||||
\DeclareMathOperator{\pe}{\varepsilon}
|
||||
\DeclareMathOperator{\pes}{\slashed{\pe}}
|
||||
|
||||
\DeclareMathOperator{\pse}{\varepsilon^{*}}
|
||||
\DeclareMathOperator{\pses}{\slashed{\pe}^{*}}
|
||||
|
||||
%% Spinor convenience
|
||||
\DeclareMathOperator{\us}{u}
|
||||
\DeclareMathOperator{\usb}{\bar{u}}
|
||||
|
||||
\DeclareMathOperator{\vs}{v}
|
||||
\DeclareMathOperator*{\vsb}{\overline{v}}
|
||||
|
||||
%% Center of Mass energy
|
||||
\DeclareMathOperator{\ecm}{E_{\text{CM}}}
|
||||
|
||||
%% area hyperbolicus
|
||||
\DeclareMathOperator{\artanh}{artanh}
|
||||
\DeclareMathOperator{\arcosh}{arcosh}
|
||||
|
||||
%% rectangle
|
||||
\DeclareMathOperator{\rect}{rect}
|
||||
|
||||
%% sinc
|
||||
\DeclareMathOperator{\sinc}{sinc}
|
||||
|
||||
%% sign
|
||||
\DeclareMathOperator{\sgn}{sgn}
|
||||
|
||||
|
||||
%% Fast Slash
|
||||
\let\sl\slashed
|
||||
|
||||
%% hermitian/complex conjugate
|
||||
\newcommand{\cc}{\ensuremath{\mathrm{c.c.}}}
|
||||
\newcommand{\hc}{\ensuremath{\mathrm{h.c.}}}
|
||||
|
||||
%% eulers number
|
||||
\def\eu{\ensuremath{\operatorname{e}}}
|
||||
|
||||
%% Notes on Equations
|
||||
\newcommand{\shorteqnote}[1]{ & & \text{\small\llap{#1}}}
|
||||
|
||||
%% Typewriter Macros
|
||||
\newcommand{\sherpa}{\texttt{Sherpa}}
|
||||
\newcommand{\rivet}{\texttt{Rivet}}
|
||||
\newcommand{\vegas}{\texttt{VEGAS}}
|
||||
\newcommand{\lhapdf}{\texttt{LHAPDF6}}
|
||||
\newcommand{\scipy}{\texttt{scipy}}
|
||||
|
||||
%% Sherpa Versions
|
||||
\newcommand{\oldsherpa}{\texttt{2.2.10}}
|
||||
\newcommand{\newsherpa}{\texttt{3.0.0} (unreleased)}
|
||||
|
||||
%% Special Names
|
||||
\newcommand{\lhc}{\emph{LHC}}
|
||||
|
||||
%% Expected Value and Variance
|
||||
\newcommand{\EX}[1]{\operatorname{E}\qty[#1]}
|
||||
\newcommand{\VAR}[1]{\operatorname{VAR}\qty[#1]}
|
||||
|
||||
%% Uppercase Rho
|
||||
\newcommand{\Rho}{P}
|
||||
|
||||
%% Transverse Momentum
|
||||
\newcommand{\pt}[0]{p_\mathrm{T}}
|
||||
|
||||
%% Sign Function
|
||||
\DeclareMathOperator{\sign}{sgn}
|
||||
|
||||
%% Stages
|
||||
\newcommand{\stone}{\texttt{LO}}
|
||||
\newcommand{\sttwo}{\texttt{LO+PS}}
|
||||
\newcommand{\stthree}{\texttt{LO+PS+pT}}
|
||||
\newcommand{\stfour}{\texttt{LO+PS+pT+Hadr.}}
|
||||
\newcommand{\stfive}{\texttt{LO+PS+pT+Hadr.+MI}}
|
||||
|
||||
%% GeV
|
||||
\newcommand{\gev}[1]{\SI{#1}{\giga\electronvolt}}
|
||||
|
||||
\def\iu{\ensuremath{𝑖}}
|
||||
\def\i{\iu}
|
||||
\def\id{\ensuremath{\mathbb{1}}}
|
||||
\def\NN{\ensuremath{\mathbb{N}}}
|
||||
\def\RR{\ensuremath{\mathbb{R}}}
|
||||
\def\CC{\ensuremath{\mathbb{C}}}
|
||||
\def\ZZ{\ensuremath{\mathbb{Z}}}
|
||||
\def\dim{\ensuremath{\operatorname{dim}}}
|
||||
\def\hilb{\ensuremath{\mathcal{H}}}
|
||||
|
||||
% fixme
|
||||
\newcommand{\fixme}[1]{\marginpar{\tiny\textcolor{red}{#1}}}
|
||||
|
||||
% HOPS/NMQSD
|
||||
\def\sys{\ensuremath{\mathrm{S}}}
|
||||
\def\bath{\ensuremath{\mathrm{B}}}
|
||||
\def\inter{\ensuremath{\mathrm{I}}}
|
||||
\def\nth{\ensuremath{^{(n)}}}
|
||||
\def\target{\ensuremath{\mathrm{target}}}
|
||||
\def\eff{\ensuremath{\mathrm{eff}}}
|
||||
|
||||
\newcommand{\mat}[1]{\ensuremath{{\underline{\vb{#1}}}}}
|
||||
\def\kmat{{\mat{k}}}
|
||||
|
||||
|
||||
% Thermo
|
||||
\newcommand{\ergo}[1]{\ensuremath{\mathcal{W}\qty[#1]}}
|
||||
\newcommand{\qrelent}[2]{\ensuremath{S\qty(#1\,\middle|\middle|\,#2)}}
|
||||
\newcommand{\cyc}{\ensuremath{\mathrm{cyc}}}
|
||||
|
||||
\makeatletter
|
||||
\newsavebox\myboxA
|
||||
\newsavebox\myboxB
|
||||
\newlength\mylenA
|
||||
|
||||
\newcommand*\xoverline[2][0.75]{%
|
||||
\sbox{\myboxA}{$\m@th#2$}%
|
||||
\setbox\myboxB\null% Phantom box
|
||||
\ht\myboxB=\ht\myboxA%
|
||||
\dp\myboxB=\dp\myboxA%
|
||||
\wd\myboxB=#1\wd\myboxA% Scale phantom
|
||||
\sbox\myboxB{$\m@th\overline{\copy\myboxB}$}% Overlined phantom
|
||||
\setlength\mylenA{\the\wd\myboxA}% calc width diff
|
||||
\addtolength\mylenA{-\the\wd\myboxB}%
|
||||
\ifdim\wd\myboxB<\wd\myboxA%
|
||||
\rlap{\hskip 0.5\mylenA\usebox\myboxB}{\usebox\myboxA}%
|
||||
\else
|
||||
\hskip -0.5\mylenA\rlap{\usebox\myboxA}{\hskip 0.5\mylenA\usebox\myboxB}%
|
||||
\fi}
|
||||
\makeatother
|
||||
|
||||
\DeclareMathOperator{\bosedist}{\xoverline{n}}
|
||||
\DeclareDocumentCommand\bose{}{\opbraces{\bosedist}}
|
||||
|
||||
%% Including plots
|
||||
% \newcommand{\plot}[1]{%
|
||||
% \ifdraft{\includegraphics[draft=false]{./figs/#1.pdf}}{\input{./figs/#1.pgf}}}
|
||||
\newcommand{\plot}[1]{%
|
||||
\includegraphics[draft=false]{./figs/#1.pdf}}
|
||||
\newcommand{\tval}[1]{{\input{./values/#1.tex}}}
|
||||
|
||||
%% citing "in ref"
|
||||
\NewBibliographyString{refname}
|
||||
\NewBibliographyString{refsname}
|
||||
\DefineBibliographyStrings{english}{%
|
||||
refname = {Ref\adddot},
|
||||
refsname = {Refs\adddot}
|
||||
}
|
||||
|
||||
\DeclareCiteCommand{\refcite}
|
||||
{%
|
||||
\ifnum\thecitetotal=1
|
||||
\bibstring{refname}%
|
||||
\else%
|
||||
\bibstring{refsname}%
|
||||
\fi%
|
||||
\addspace\bibopenbracket%
|
||||
\usebibmacro{cite:init}%
|
||||
\usebibmacro{prenote}}
|
||||
{\usebibmacro{citeindex}%
|
||||
\usebibmacro{cite:comp}}
|
||||
{}
|
||||
{\usebibmacro{cite:dump}%
|
||||
\usebibmacro{postnote}%
|
||||
\bibclosebracket}
|
93
papers/Report/hirostyle.sty
Normal file
93
papers/Report/hirostyle.sty
Normal file
|
@ -0,0 +1,93 @@
|
|||
\ProvidesPackage{hirostyle}
|
||||
\usepackage[T1]{fontenc}
|
||||
% load early
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{physics}
|
||||
\usepackage{graphicx, booktabs, float}
|
||||
\usepackage[tbtags]{mathtools}
|
||||
\mathtoolsset{mathic=true}
|
||||
|
||||
\usepackage{amssymb}
|
||||
\usepackage[backend=biber, language=english, style=phys, sorting=none, backref=true]{biblatex}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{caption}
|
||||
\usepackage{sidecap}
|
||||
\usepackage[list=true, font=footnotesize, labelformat=brace]{subcaption}
|
||||
\usepackage[protrusion=true,expansion=true,tracking=true]{microtype}
|
||||
\usepackage{fancyvrb}
|
||||
\usepackage{longtable}
|
||||
\usepackage{booktabs}
|
||||
\usepackage[autostyle=true]{csquotes}
|
||||
\usepackage{setspace}
|
||||
\usepackage{newunicodechar}
|
||||
\usepackage[pdfencoding=auto,hidelinks,colorlinks=true,
|
||||
linkcolor=blue,
|
||||
filecolor=blue,
|
||||
citecolor = black,
|
||||
urlcolor=cyan,]{hyperref} % load late
|
||||
\usepackage[capitalize]{cleveref}
|
||||
\usepackage{multirow,tabularx}
|
||||
\usepackage{bbold}
|
||||
\usepackage{scrhack}
|
||||
\usepackage{fontspec}
|
||||
\usepackage{unicode-math}
|
||||
\setmainfont[Ligatures={Common,Rare,TeX,Required}]{texgyrepagella}[
|
||||
Extension = .otf,
|
||||
UprightFont = *-regular,
|
||||
BoldFont = *-bold,
|
||||
ItalicFont = *-italic,
|
||||
BoldItalicFont = *-bolditalic,
|
||||
]
|
||||
\setmathfont{texgyrepagella-math.otf}
|
||||
\KOMAoptions{DIV=last}
|
||||
\usepackage[autooneside]{scrlayer-scrpage}
|
||||
\usepackage[titletoc]{appendix}
|
||||
\usepackage{bigfoot}
|
||||
\usepackage{orcidlink}
|
||||
%\usepackage[cmyk,hyperref]{xcolor}
|
||||
\usepackage{wrapfig2}
|
||||
\usepackage{xpatch}
|
||||
|
||||
\usepackage{lualatex-math}
|
||||
\usepackage{manyfoot}
|
||||
\usepackage[bottom]{footmisc}
|
||||
\raggedbottom
|
||||
|
||||
\DeclareNewFootnote{default} % standard footnotes
|
||||
\DeclareNewFootnote{URL}[roman] % href footnotes
|
||||
\let\oldhref\href
|
||||
\renewcommand{\href}[2]{\oldhref{#1}{#2}\footnoteURL{\url{#1}}}
|
||||
|
||||
%% Including Results
|
||||
\newcommand{\result}[1]{\input{./results/#1}\!}
|
||||
|
||||
%% SI units
|
||||
\sisetup{separate-uncertainty = true}
|
||||
|
||||
%% Captions
|
||||
\captionsetup{font=small,format=plain}
|
||||
\captionsetup[sub]{font=small,format=plain}
|
||||
|
||||
%% Labels
|
||||
% \labelformat{chapter}{chapter~#1}
|
||||
% \labelformat{section}{section~#1}
|
||||
% \labelformat{figure}{figure~#1}
|
||||
% \labelformat{table}{table~#1}
|
||||
|
||||
%% Cleverref
|
||||
\crefname{equation}{}{}
|
||||
\creflabelformat{equation}{(#2#1#3)}
|
||||
|
||||
%% Font for headings
|
||||
\addtokomafont{disposition}{\rmfamily}
|
||||
|
||||
%% Minus Sign for Matplotlib
|
||||
\newunicodechar{−}{-}
|
||||
|
||||
% Allow math page breaks
|
||||
\allowdisplaybreaks
|
||||
|
||||
% cursive bold in maths
|
||||
\unimathsetup{math-style=TeX,bold-style=ISO}
|
||||
|
||||
\recalctypearea
|
552
papers/Report/index.tex
Normal file
552
papers/Report/index.tex
Normal file
|
@ -0,0 +1,552 @@
|
|||
\documentclass[fontsize=10pt,paper=a4,open=any,
|
||||
twoside=no,toc=listof,toc=bibliography,headings=optiontohead,
|
||||
captions=nooneline,captions=tableabove,english,DIV=15,numbers=noenddot,final,parskip=half-,
|
||||
headinclude=true,footinclude=false,BCOR=0mm]{scrartcl}
|
||||
\pdfvariable suppressoptionalinfo 512\relax
|
||||
\synctex=1
|
||||
|
||||
\usepackage{hirostyle}
|
||||
\usepackage{hiromacros}
|
||||
\addbibresource{references.bib}
|
||||
|
||||
\title{Report on the Reservoir Engineering Efforts}
|
||||
\date{2023}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
\tableofcontents
|
||||
|
||||
\section{Equations of Motion for a Modulated Fiber Loop}
|
||||
\label{sec:equat-moti-modul}
|
||||
\subsection{Introduction}
|
||||
\label{sec:introduction}
|
||||
To obtain an equation of motion for the electric field that can be
|
||||
interpreted as a Hamiltonian, we have to reduce the wave equation to
|
||||
first order in time. Here we work with the paraxial approximation,
|
||||
ignoring any transverse fields. A more rigorous treatment, to be used
|
||||
in numeric simulations, can be derived from wave guide theory as
|
||||
in~\refcite{Yuan2018a,Haus1984}.
|
||||
|
||||
We ultimately want to treat a ring modulator with a space and time
|
||||
dependent refractive index \(n = n_{0} + n_{1}(\vb{r}, t)\) with
|
||||
\(n_{1}\ll n_{0}\). This situation is close to the case where
|
||||
\(n_{1}=0\) where the wave equation can be solved by a plane-wave
|
||||
ansatz.
|
||||
|
||||
To capture near-adiabatic deviations from these solutions, we split off
|
||||
the fast time evolution of the electric field
|
||||
\begin{equation}
|
||||
\label{eq:1}
|
||||
\vb{E}(\vb{r}, t) = \vb{E}_{0}(\vb{r}, t) \eu^{-\i ω t},
|
||||
\end{equation}
|
||||
where \(ω\) is as yet undetermined. Now, we \emph{assume} that
|
||||
\(\dot{\vb{E}}_{0}\sim Ω \cdot\vb{E}_{0}\) with a characteristic
|
||||
frequency \(Ω \ll ω\). This assumption will have to be verified in the
|
||||
final result to guarantee consistency. We define the small parameter
|
||||
\(δ = \frac{Ω}{ω} \ll 1\) for convenience.
|
||||
|
||||
For our purposes the magnetic permeability is constant \(μ=μ_{0}\),
|
||||
whereas the permittivity \(ε(\vb{r}, t)\) is time dependent with
|
||||
\(\dot{ε} \sim Ω ε\). As we are not taking spatial derivatives of
|
||||
\(ε\), the spatial argument will be suppressed in the following.
|
||||
|
||||
The electric field is real valued, although we do not explicitly take
|
||||
the real part for now.
|
||||
|
||||
\subsection{A Perturbative Maxwell Equation for a Slowy Changing
|
||||
Envelope}
|
||||
\label{sec:pert-maxw-equat}
|
||||
Applying a second curl to the Maxwell equation\footnote{Which is the
|
||||
canonical way to derive the wave equation.} \(\nabla \times\vb{E} =
|
||||
- ∂_{t}\vb{{B}}\) leads to
|
||||
\begin{equation}
|
||||
\label{eq:2}
|
||||
\begin{aligned}
|
||||
\nabla \times (\nabla \times \vb{E}) &= -{\nabla}^{2} \vb{E} =
|
||||
-∂_{t}\bqty{\mu ∂_{t}\pqty{ε\vb{E}}}=-\mu\pqty{\ddot{ε} \vb{E} + 2
|
||||
\dot{ε}\dot{\vb{E}} + ε \ddot{\vb{E}}} \\
|
||||
&= -μ ω^{2} \bqty{\underbrace{-ε\vb{E}_{0}}_{\sim δ^{0}} + \underbrace{2 \frac{\dot{ε}}{ω}
|
||||
\vb{E}_{0} -
|
||||
2\iu \frac{ε}{ω}\dot{\vb{E}}_{0}}_{\sim δ^{1}} + \underbrace{2 \frac{\dot{ε}}{ω^{2}}
|
||||
\dot{\vb{E}}_{0} + \frac{ε}{ω^{2}}\ddot{\vb{E}}_{0}}_{\sim δ^{2}}}\eu^{-\iu ω t}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
Up to this point we have not made any approximation. We now proceed to
|
||||
drop the terms of second order in \(δ\).
|
||||
|
||||
This leaves us with
|
||||
\begin{equation}
|
||||
\label{eq:3}
|
||||
\nabla^{2}\vb{E}_{0} = μ ω^{2} \bqty{\pqty{\frac{2\dot{ε}}{ω} - ε}
|
||||
\vb{E}_{0} - \frac{2 \iu ε}{ω} \dot{\vb{E}}_{0}} = \frac{n^{2} ω^{2}}{c^{2}} \bqty{\pqty{\frac{4\dot{n}}{nω} - 1}
|
||||
\vb{E}_{0} - \frac{2 \iu }{ω} \dot{\vb{E}}_{0}},
|
||||
\end{equation}
|
||||
with \(n=\sqrt{ε μ} c\) which can be rearranged into a form that resembles the
|
||||
Schr\"odinger equation
|
||||
\begin{equation}
|
||||
\label{eq:4}
|
||||
\iu ∂_{t}\vb{E}_{0} = - \frac{c^{2}}{2 n^{2} ω} \nabla^{2}\vb{E}_{0} +
|
||||
\frac{1}{2}\pqty{\frac{4\dot{n}}{n}-ω}
|
||||
\vb{E}_{0}.
|
||||
\end{equation}
|
||||
Note however, that the ``mass'' \(ωn^{2}/c^{2}\) in the kinetic term is not
|
||||
constant, giving rise to non hermitian dynamics. This is an artifact
|
||||
of neglecting orders of \(δ\). We will find however, that in the
|
||||
situation investigated in \cref{sec:modul-small-port} the violation of
|
||||
Hermiticity is negligible.
|
||||
|
||||
In contrast to the result in \cite{Dutt2019}, \cref{eq:4} is still
|
||||
second order in space and, provided \(ε\) is real, hermitian.
|
||||
|
||||
\subsection{Application to a Ring Resonator}
|
||||
\label{sec:appl-ring-reson}
|
||||
As we are describing a fiber ring of radius \(R\) it is convenient to
|
||||
work in cylindrical coordinates \((ρ, ϕ, z)\). We are interested in
|
||||
the electric field at the center of the fiber and assume that it does
|
||||
not vary much in the transversal directions. Thus, we neglect the
|
||||
dependence of the field on the \(z\) and \(ρ\) directions and make an
|
||||
ansatz \(\vb{E}_{0} = E(ϕ, t, ρ=R)\hat{\vb{z}}\).
|
||||
|
||||
To satisfy the boundary condition \(E(t, 0) = E(t, 2π)\) \(\forall
|
||||
t\), we expand the field into a Fourier series
|
||||
\begin{equation}
|
||||
\label{eq:6}
|
||||
E(ϕ, t) = ∑_{m=-∞}^{+∞} C_{m} a_{m}(t) \eu^{\iu m ϕ},
|
||||
\end{equation}
|
||||
with \(C_{m}\) chosen appropriately later, so as to make the \(a_{m}\)
|
||||
dimensionless. Note that to obtain the \(a_{m}\) of \cite{Dutt2019}
|
||||
one has to make the substitution \(a_{m}(t) \to a_{-m}(t)\).
|
||||
|
||||
In the case of a constant refractive index \(n_{0}\), the modes solve
|
||||
the ordinary wave equations so that
|
||||
\(a_{m}\sim \eu^{\iu (mϕ - ω_{m}t)}\) with\footnote{This also deviates
|
||||
from \cite{Dutt2019}. There \(m\geq 0\) and also the negative \(ω\)
|
||||
solutions are missing. One has to include either one or the other to
|
||||
capture all solutions. The reason for this lies their explicit
|
||||
construction of a real solution. However, the fact that frequencies
|
||||
with a different sign relative to the wave vector exist is not
|
||||
captured by their first order differential equation.}
|
||||
\(ω_{m} = \pm \frac{m c}{R n_{0}}\). Applying the procedure of
|
||||
\cref{sec:pert-maxw-equat}, but to each of the mode amplitudes
|
||||
\(a_{m}=b_{m}\eu^{-\iu ω_{m}t}\) (with \(ω_{m}\) as yet unspecified)
|
||||
we find
|
||||
\begin{equation}
|
||||
\label{eq:7}
|
||||
\begin{aligned}
|
||||
\frac{1}{R^{2}} ∑_{m=-∞}^{+∞} C_{m} b_{m}(t)\eu^{-iω_{m}t} ∂_{ϕ}^{2}\eu^{\iu m ϕ}
|
||||
&= \frac{-1}{R^{2}} ∑_{m=-∞}^{+∞} C_{m}m^{2} b_{m}(t) \eu^{\iu (m ϕ-ω_{m}t)}\\
|
||||
&= ∑_{m=-∞}^{+∞}C_{m}\frac{n^{2} ω_{m}^{2}}{c^{2}} \bqty{\pqty{\frac{4\dot{n}}{nω_{m}} - 1}
|
||||
b_{m}(t) - \frac{2 \iu }{ω_{m}} \dot{b}_{m}(t)}\eu^{\iu (m ϕ-ω_{m}t)}.
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
In the limit \(\dot{n}\to 0 \implies n(ϕ,t) = n_{0}=\mathrm{const}\)
|
||||
we should recover \(\dot{b}_{m}=0\), which implies
|
||||
\begin{equation}
|
||||
\label{eq:8}
|
||||
ω_{m}^{2}=\pqty{\frac{mc}{Rn_{0}}}^{2} \implies ω_{m} = \pm
|
||||
\abs{\frac{mc}{Rn_{0}}},
|
||||
\end{equation}
|
||||
which defines the \(ω_{m}\) in this case. However, to correctly
|
||||
determine the \(ω_{m}\), a slightly more delicate argument has to be
|
||||
made.
|
||||
|
||||
|
||||
Evaluating the \(∂_{ϕ}\) derivative, rearranging, applying
|
||||
\((2π)^{-1}\int_{0}^{2π}\dd{ϕ} \eu^{-\iu l ϕ}\) and defining \(n(ϕ,t)
|
||||
= n_{0} + n_{1}(ϕ, t)\) yields
|
||||
\begin{equation}
|
||||
\label{eq:9}
|
||||
\dot{b}_{l}=-\iu ∑_{m}\bqty{κ_{lm} + γ_{lm}}\eu^{-\iu (ω_{m}-ω_{l}) t}b_{m},
|
||||
\end{equation}
|
||||
with
|
||||
\begin{align}
|
||||
κ_{lm}&= \frac{C_{m}}{4π
|
||||
ω_{l}C_{l}}∫_{0}^{2π}\pqty{\frac{m^{2}c^{2}}{n^{2}R^{2}} - ω_{m}^{2}}\eu^{\iu(m-l) ϕ}\dd{ϕ} \overset{\cref{eq:8}}{=}
|
||||
A_{lm} ∫_{0}^{2π}\pqty{\frac{n_{0}^{2}}{n^{2}} - 1}\eu^{\iu(m-l)ϕ}\dd{ϕ} \label{eq:10}\\
|
||||
\label{eq:11}
|
||||
γ_{lm}&= A_{lm}∫_{0}^{2π}\pqty{\frac{4\dot{n}(ϕ, t)}{ω_{m}n(ϕ,
|
||||
t)}}\eu^{\iu(m-l) ϕ}\dd{ϕ}\\
|
||||
\label{eq:12}
|
||||
A_{lm}&=\frac{C_{m}ω_{m}^{2}}{4π
|
||||
ω_{l}C_{l}}=\frac{1}{4π}\frac{C_{m}}{C_{l}}\frac{m^{2}}{l}\frac{c}{Rn_{0}} =\frac{1}{4π}\frac{C_{m}}{C_{l}}\frac{m^{2}}{l}Ω_{R}
|
||||
\end{align}
|
||||
which is a Sch\"odinger equation with the Hamiltonian
|
||||
\(H_{lm}=\bqty{κ_{lm} + γ_{lm}}\). The denominator of \cref{eq:12} may
|
||||
be cause for concern in the case that \(l=0\). This would imply
|
||||
\(ω_{l}=0\) which breaks our assumption \(δ\ll 1\). The sum over \(m\)
|
||||
in \cref{eq:6} should therefore exclude small \(m\).
|
||||
|
||||
Note also that even in the \(\dot{n}=0\) case \cref{eq:10} does not
|
||||
vanish. The coupling of the modes originates from the (spatially
|
||||
modulated) deviation of \(n\) from \(n_{0}\). It is also clear, that
|
||||
the choice of \(n_{1}(ϕ,t)\) has to be made so that
|
||||
\(\int_{0}^{1}\abs{n_{0}^{2}/n_{1}^{2}-1}\dd{ϕ}\) is minimized to best
|
||||
approximate the condition \(δ\ll 1\) by minimizing \(κ_{lm}\) and
|
||||
justify the definition of the \(ω_{m}\). Remember that the \(ω_{m}\)
|
||||
are still free parameters and have to be chosen so that
|
||||
\({∂_{t}{b}_{m}}/{b_{m}}\sim δ \ll 1\). In particular
|
||||
\(n_{1}(ϕ, t) = \mathrm{const}\) is not a valid choice. Preferably,
|
||||
one should define the \(ω_{m}\) to minimize the \(κ_{lm}\) in
|
||||
\cref{eq:10}. This also yields the exact solution in the
|
||||
\(n(ϕ,t)=\mathrm{const}\) case.
|
||||
|
||||
For time independent \(n_{1}\) we can find suitable \(ω_{m}\) by
|
||||
minimizing
|
||||
\begin{equation}
|
||||
\label{eq:15}
|
||||
\bqty{∫_{0}^{2π}\pqty{\frac{m^{2}c^{2}}{n^{2}R^{2}} - ω_{m}^{2}}\dd{ϕ}}^{2}
|
||||
\end{equation}
|
||||
giving
|
||||
\begin{equation}
|
||||
\label{eq:14}
|
||||
ω_{m}^{2}= \frac{1}{2π} \frac{m^{2}c^{2}}{R^{2}} ∫_{0}^{2π}
|
||||
n(ϕ)^{-2}\dd{ϕ}=\pqty{\frac{m c}{R n_{\mathrm{eff}}}}^{2},
|
||||
\end{equation}
|
||||
where \(n_{eff}^{-2}=(2π)^{-1}∫_{0}^{2π}n^{-2}\dd{ϕ}\). If \(n_{1}\)
|
||||
depends on time, one may use the long time average of \cref{eq:14}.
|
||||
|
||||
|
||||
\subsection{Modulation of a small portion of the ring.}
|
||||
\label{sec:modul-small-port}
|
||||
|
||||
We now turn to the case of the modulation of a small angular portion
|
||||
\(ϕ_{W}\) of the ring. In such a case
|
||||
\begin{equation}
|
||||
\label{eq:5}
|
||||
n=n_{0}+n_{1}(t)\rect\pqty{\frac{ϕ}{ϕ_{W}}},
|
||||
\end{equation}
|
||||
where \(\rect(x)=Θ(1/4-x^{2})\) and \(Θ\) is the Heaviside step
|
||||
function. As the tangential components of the electric field are
|
||||
continuous, we face no problems on this front.
|
||||
|
||||
If we further demand \(\abs{\max_{t} n_{1}(t)}\ll 1\) and \(\lim_{T\to
|
||||
∞} T^{-1} ∫_{0}^{T}n_{1}(t)\dd{t} = 0\) we can choose
|
||||
the \(ω_{n}\) as in \cref{eq:8}, as follows from \cref{eq:12}
|
||||
\begin{equation}
|
||||
\label{eq:16}
|
||||
ω_{m}^{2}=\lim_{T\to
|
||||
∞}\frac{1}{T}∫_{0}^{T}\frac{m^{2}c^{2}}{R^{2}}\bqty{\frac{1}{n_{0}^{2}}+ϕ_{W}\pqty{\frac{1}{n^{2}}-\frac{1}{n_{0}^{2}}}}\dd{t}
|
||||
\approx \lim_{T\to
|
||||
∞}\frac{1}{T}∫_{0}^{T}\frac{m^{2}c^{2}}{R^{2}}\bqty{\frac{1}{n_{0}^{2}}
|
||||
- 2ϕ_{W}\pqty{\frac{n_{1}(t)}{n_{0}}}}\dd{t} =\pqty{\frac{mc}{Rn_{0}}}^{2}.
|
||||
\end{equation}
|
||||
|
||||
To connect to the result in \cite{Dutt2019}, we can then further
|
||||
evaluate \cref{eq:10}, using
|
||||
\(C_{m}=\sqrt{\frac{\hbar \abs{ω_{m}}}{4π R ε_{0}n_{0}^{2}}}\) to find
|
||||
\begin{equation}
|
||||
\label{eq:17}
|
||||
κ_{lm}=\frac{Ω_{R}ϕ_{W}\abs{l}^{-\frac{3}{2}}\abs{m}^{\frac{5}{2}}}{4π}
|
||||
\pqty{\frac{n_{0}^{2}}{(n_{0}+n_{1}(t))^{2}}-1}\sinc\pqty{(m-l)\frac{ϕ_{W}}{2}}\sgn(l).
|
||||
\end{equation}
|
||||
|
||||
Note that here, we introduced an additional sign compared to
|
||||
\cite{Dutt2019}, and we already transformed to a rotating frame.
|
||||
|
||||
A slightly different choice of normalization
|
||||
\begin{equation}
|
||||
\label{eq:13}
|
||||
C_{m}=\frac{1}{m^{2}}\sqrt{\frac{\hbar \abs{ω_{m}}}{4π R
|
||||
ε_{0}n_{0}^{2}}}
|
||||
\end{equation}
|
||||
makes \(κ_{lm}\) hermitian and reproduces the result of
|
||||
\cite{Dutt2019}
|
||||
\begin{equation}
|
||||
\label{eq:18}
|
||||
\begin{aligned}
|
||||
κ_{lm}&=\frac{Ω_{R}ϕ_{W}\sqrt{ml}}{4π}
|
||||
\pqty{\frac{n_{0}^{2}}{(n_{0}+n_{1}(t))^{2}}-1}\sinc\pqty{(m-l)\frac{ϕ_{W}}{2}}\sgn(l)\\
|
||||
&\approx
|
||||
\frac{Ω_{R}ϕ_{W}\sqrt{ml}}{2π}
|
||||
\frac{n_{1}(t)}{n_{0}}\sinc\pqty{(m-l)\frac{ϕ_{W}}{2}}\sgn(l).
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
As we are interested in the case where \(m,l\gg 1\) and
|
||||
\(m=M+δm\), \(l=M+δl\) with \(δm,δl\ll M\), the pre-factor of \(κ_{lm}\)
|
||||
can be regarded as constant either way, guaranteeing hermiticity.
|
||||
|
||||
Note that compared to \cite{Dutt2019} we added an additional sign in
|
||||
\cref{eq:9} and swapped the index \(m,l\) with \(-m,-l\). This leads to
|
||||
\cref{eq:18} having the same sign as in this publication, rather than
|
||||
the opposite as one would expect from \cref{eq:9} alone.
|
||||
|
||||
This constitutes a rigorous derivation of the result in that paper.
|
||||
|
||||
|
||||
Evaluating \cref{eq:11} yields
|
||||
\fixme{to be done}.
|
||||
|
||||
\subsection{Open Questions}
|
||||
\label{sec:open-questions}
|
||||
|
||||
It would be interesting to compute an explicit expression for the
|
||||
magnetic field as well. To do so would allow us to check the
|
||||
continuity for \(μ\vb{H}=\vb{B}\) and to compute the Poynting vector
|
||||
and give the modes a propagation direction. Of course this direction
|
||||
can be inferred from the \(n=n_{0}=\mathrm{const}\) case.
|
||||
|
||||
It would also be of interest, to find out how good the paraxial
|
||||
approximation captures the real field at the center of the fiber.
|
||||
|
||||
Lastly, the case of time independent \(n\) can likely be solved
|
||||
exactly fairly easily. It would be interesting to see how this
|
||||
solution relates to the equation found here.
|
||||
|
||||
\section{Engineering Hamiltonians}
|
||||
\label{sec:engin-hamilt}
|
||||
|
||||
Having obtained the basic equations of motion in
|
||||
\cref{sec:equat-moti-modul}, we now proceed to explore how to engineer
|
||||
model Hamiltonians out of this equation.
|
||||
|
||||
\subsection{Notation and Preliminaries}
|
||||
\label{sec:notat-prel}
|
||||
|
||||
|
||||
Before we begin to detail procedures to obtain engineered
|
||||
Hamiltonians, a few notions concerning notation and the general
|
||||
assumptions will be introduced.
|
||||
|
||||
On the physical level, we work with Fourier components \(b_{m}(t)
|
||||
\eu^{\iu (mϕ-ω_{m}t)}\) of
|
||||
the electric Field in the ring resonators in an appropriate frame.
|
||||
The amplitudes \(b_{m}\) can then be identified with a quantum state
|
||||
by defining
|
||||
\begin{equation}
|
||||
\label{eq:19}
|
||||
\ket{ψ} \equiv ∑_{m} b_{m}\ket{m}
|
||||
\end{equation}
|
||||
with \(\ket{m}\) being orthonormal unit vectors
|
||||
(\(\braket{m}{n}=δ_{mn}\)) in a Hilbert space \(\hilb\). This defines
|
||||
the fiducial basis in which the state can be measured by recording the
|
||||
slowly changing envelopes of the modes.
|
||||
|
||||
In this language \cref{eq:9} (in the non-rotating frame) becomes
|
||||
\begin{equation}
|
||||
\label{eq:20}
|
||||
\iu ∂_{t}\ket{ψ} = H(t) \ket{ψ},
|
||||
\end{equation}
|
||||
with \(H_{mn}(t)= κ_{mn}(t)\eu^{-\iu{ω_{n}-ω_{m}}t}\) where we've neglected the \(γ_{mn}\)
|
||||
contribution from \cref{eq:11}. Let us also define
|
||||
\begin{equation}
|
||||
\label{eq:21}
|
||||
\begin{aligned}
|
||||
[D(ω)]_{mn} &\equiv ω_{m} δ_{mn} & κ_{mn}(t) & \equiv Δ_{mn}
|
||||
\frac{n_{1}(t)}{n_{0}} \equiv Δ_{mn}\, f(t),
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
where \(n(t) = n_{0} + n_{1}(t)\) with \(n_{1}\ll n_{0}\) as discussed
|
||||
in \cref{sec:modul-small-port}.
|
||||
|
||||
The above may seem rather obvious, but a clarification of conventions
|
||||
is crucial.
|
||||
In that vein the Hamiltonian of \cref{eq:20} can be expressed as
|
||||
\begin{equation}
|
||||
\label{eq:22}
|
||||
H = H_{0} + V(t)
|
||||
\end{equation}
|
||||
with \(H_{0}=D(ω)\) and \(V(t)=Δ\, f(t)\).
|
||||
|
||||
For practical reasons and in order for the assumptions of
|
||||
\cref{sec:pert-maxw-equat} to hold, we will always work with finite
|
||||
set of resonator modes, making our effective Hamiltonians finite
|
||||
dimensional. Further, it is assumed that we stimulate and modulate the
|
||||
system in such a way, that the boundary conditions in mode space are
|
||||
not important, so that they can be chosen at our convenience. This
|
||||
means that we're only concerned with a finite subspace
|
||||
\(\hilb_{\mathrm{phys}} = \qty{\ket{m} \colon m\in
|
||||
\bqty{{m_{0}-(N-1)/2},{m_{0} + (N-1)/2}}} \subset \hilb\).
|
||||
|
||||
The goal is now to choose the geometry and the modulation so that
|
||||
the time evolution operator
|
||||
\begin{equation}
|
||||
\label{eq:23}
|
||||
\mathcal{U}_{t}[H] = \mathcal{T}\,\exp(-\iu ∫_{0}^{t}H(t))
|
||||
\end{equation}
|
||||
for the Hamiltonian \(H\) of \cref{eq:20} matches the time evolution
|
||||
operator for some reference Hamiltonian \(H_{\target}\)
|
||||
\begin{equation}
|
||||
\label{eq:24}
|
||||
\norm{\mathcal{U}_{t}[U H U^\dag]-\mathcal{U}_{t}[H_{\target}]} < ε
|
||||
\iff \norm{\bqty{U_{t}[U H U^†]-U_{t}[H_{\target}]}\ket{ψ}} \leq ε.
|
||||
\end{equation}
|
||||
for \(0\leq t\leq T\), where \(\norm{\cdot}\) on the left side is the
|
||||
operator norm restricted \(\hilb_{\mathrm{phys}}\), \(U\) is some
|
||||
unitary and \(ε>0\). The unitary \(U\) is allowing for a basis change
|
||||
relative to the physical basis \cref{eq:19}. We require unitary
|
||||
equivalence with the same unitary for all times. As
|
||||
\(\mathcal{U}_{t}[H]\) is invertible, it would be trivial to achieve
|
||||
perfect equivalence using a time dependent unitary
|
||||
\begin{equation}
|
||||
\label{eq:25}
|
||||
U(t)=\mathcal{U}_{t}[H_{\target}] \mathcal{U}_{t}[H_{\target}]^†.
|
||||
\end{equation}
|
||||
|
||||
As transformations into rotating frames are necessary we have to
|
||||
loosen the requirement and allow those transformations as well. These
|
||||
transformations then amount to considering oscillatory linear
|
||||
combinations of the oscillator mode amplitudes.
|
||||
|
||||
This ``problem'' does not occur in \cite{Dutt2019}, as there the
|
||||
response to a certain input is measured, yielding a band
|
||||
structure. This requires the actual Floquet energies \emph{in the
|
||||
rotating frame} to match the eigenenergies of the target
|
||||
Hamiltonian. But if observables such as the mean displacement of a
|
||||
walker such as in \refcite{Ricottone2020} are to be computed, the
|
||||
measured quantity should be the amplitudes, or equivalently the state
|
||||
\(\ket{ψ}\). These should be obtained directly using only simple
|
||||
transformations such linear combinations (constant unitaries) and
|
||||
translation of the signals in frequency space (rotating frame). For if
|
||||
we knew the detailed dynamics induced \(H_{target}\) already, there
|
||||
would be little point in trying to simulate them in the first place
|
||||
and using an elaborate transformation such as \cref{eq:25} would
|
||||
defeat the point.
|
||||
|
||||
|
||||
It is useful to express the above in terms of an effective Hamiltonian
|
||||
\begin{equation}
|
||||
\label{eq:26}
|
||||
H_{\eff}[H](t)\equiv \frac{1}{-\iu t} \log[U_{t}[H]].
|
||||
\end{equation}
|
||||
This Hamiltonian, similar to the Floquet Hamiltonian, has a spectrum
|
||||
limited by the branch cut of the complex logarithm, which however has
|
||||
no influence on the dynamics it generates. By continuity of the
|
||||
operator exponential the closeness
|
||||
\(\norm{H_{\eff}[H](t) -H_{\eff}[H_{\target}](t)} \leq ε/t\) of the
|
||||
effective Hamiltonians implies the condition \cref{eq:24}. This
|
||||
representation lends itself particularly well to visualizations and
|
||||
numerical studies.
|
||||
|
||||
If one is only interested in specific initial states, then one could
|
||||
specify the less strict requirement, that the evolution of these
|
||||
specific states should not deviate from the target.
|
||||
|
||||
Another possibility to loosen restrictions would be to only demand the
|
||||
coincidence of the time evolution operators or the effective
|
||||
Hamiltonians for a specific time \(t\).
|
||||
|
||||
\section{A Single Fiber Loop}
|
||||
\label{sec:single-fiber-loop}
|
||||
This section mostly follows~\refcite{Dutt2019}, focusing on how to
|
||||
engineer a one-dimensional tight-binding Hamiltonians with one orbital
|
||||
per unit cell,
|
||||
\begin{equation}
|
||||
\label{eq:27}
|
||||
H = ∑_{m,n=-M}^{M}t_{mn} \ketbra{m_{0}+m}{m_{0}+n}.
|
||||
\end{equation}
|
||||
|
||||
There we employ periodic boundary conditions to simplify the
|
||||
calculations, so that \(\ket{m+N} = \ket{m}\) and
|
||||
\(t_{m,n}=\min_{l\in \ZZ}{\abs{m-n + l N}}\). Here, we choose
|
||||
\(N=2M +1\) for some \(M\in\NN\) and \(m_{0}\) so, that the relevant
|
||||
subspace \(\hilb_{phys}\) is contained in it so that states within
|
||||
this subspace don't ``see'' the boundary at the relevant time scales.
|
||||
|
||||
|
||||
\section{Measuring the State Amplitudes}
|
||||
\label{sec:meas-state-ampl}
|
||||
|
||||
TBD
|
||||
|
||||
\section{Motivational Issues}
|
||||
\label{sec:motiv-probl}
|
||||
|
||||
\emph{This section reflects the personal thoughts of Valentin Boettcher and
|
||||
is correspondingly formulated in the first person.}
|
||||
|
||||
Along with the issue concerning arbitrary unitary transformations on
|
||||
the amplitudes mentioned in \cref{sec:notat-prel}, I also wonder how
|
||||
we could consider the fiber loop experiment a ``realization'' of a
|
||||
certain model.
|
||||
|
||||
In a puristic sense, it is of course. We have a system that follows
|
||||
dynamics induced by a linear differential equation resembling the
|
||||
Schr\"odinger equation. More to the point\footnote{In my eyes.} would
|
||||
be, to realize a quantum mechanical model in a \emph{physical quantum
|
||||
mechanical system}. By this, I mean using a system whose dynamics
|
||||
are given by a Hamiltonian we know and can engineer, so that the
|
||||
measurement of its \emph{quantum state} matches our engineering
|
||||
goals. This has been done in \cite{Roushan2014} for example. The
|
||||
crucial difference to our fiber loop experiment is, that the actual
|
||||
physics taking place are quantum mechanical in nature. Each
|
||||
realization of a model in such a system would constitute a test of
|
||||
quantum mechanics and thus be of interest from a physical
|
||||
standpoint. It would also constitute a physical implementation of some
|
||||
(hopefully) interesting behavior, for example Mojorana modes, or
|
||||
super-conductivity, or some topological effects.
|
||||
|
||||
One can of course interject now that light, or any physical system, is
|
||||
quantum mechanical in nature and by measuring the amplitude and phase
|
||||
of the resonator modes, we also perform a quantum measurement albeit
|
||||
neglecting the fluctuations. In that sense however, a numerical simulation
|
||||
would then also constitute an equally valid ``realization''.
|
||||
|
||||
The one merit of the fiber loop setup (or any similar setup) that I
|
||||
can think of is then to solve problems that are not tractable
|
||||
analytically or numerically and that are nevertheless of practical
|
||||
interest. The main goal of this project in the short term should then
|
||||
be to identify such problems and asses them with respect to their
|
||||
eligibility for treatment using the analog computer.
|
||||
|
||||
I must admit that this prospect seems daunting to me, as I'm lacking
|
||||
the experience in the field. This of-course is no reason to throw the
|
||||
towel. It just puts me off.
|
||||
|
||||
Working on something that has some chance of turning out to be of no
|
||||
immediate practical use is also nothing that should frighten a
|
||||
physicist. The development of quantum mechanics itself answered an
|
||||
interesting physical questions and much later paid off by giving us
|
||||
the technology that enables the information age.
|
||||
|
||||
Odd enough, I'm lacking the angle to find the question ``Can we coax
|
||||
the fiber loop setup into simulating the Hamiltonian \(H\)?''
|
||||
interesting. This is a subjective phenomenon, but how can't it be? Of
|
||||
course, I can work on it and even achieve progress, but if work is all
|
||||
I wanted, I could become a programmer and earn a much better living.
|
||||
|
||||
My mental machinery is easily blocked by doubt and anxiety. When I am
|
||||
sitting down to work I am constantly questioning whether I'm doing the
|
||||
right thing and that leads to situations in which I am too petrified
|
||||
to think properly or I am taking every opportunity to procrastinate
|
||||
(such as the Dresden Project and Course Work and Chatting with others
|
||||
or acquiring stuff on Kiji or dawdling in the morning).
|
||||
|
||||
Also, I'm rather afraid to have to present my work in a motivated
|
||||
manner, e.g. for the prelims and in applications for scholarships.
|
||||
|
||||
If this renders me unfit for the pursuit of a PhD in physics, then I
|
||||
am perfectly happy to accept that. I am not doing it for the title,
|
||||
but because I thought I would enjoy the experience.
|
||||
|
||||
All this complaining is not very constructive, but I hope it
|
||||
illuminates how I feel and points a way towards the resolution of the
|
||||
issue.
|
||||
|
||||
The next step after reaching the immediate goal of realizing the model
|
||||
in \refcite{Ricottone2020}, as mentioned above, is to be constructive
|
||||
and work on scoping out the future work to reduce the uncertainty. I
|
||||
am currently preparing a list of things that interest me along with
|
||||
reasons for that interest, but I'm not sure which of these things are
|
||||
open to me and in which context. Do they have to be related to the
|
||||
fiber loop setup? Do they have to be related to synthetic dimensions?
|
||||
What role do open systems play? My hope is that I can rely, at least
|
||||
in part, on the guidance of more qualified and experience persons to
|
||||
choose a research direction. Otherwise, the responsibility may be too
|
||||
much for me.
|
||||
|
||||
I may also just be overlooking something that alleviates the issue
|
||||
discussed at the beginning, which would be the optimal situation.
|
||||
|
||||
\printbibliography{}
|
||||
\end{document}
|
||||
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: t
|
||||
%%% TeX-output-dir: "output"
|
||||
%%% TeX-engine: luatex
|
||||
%%% End:
|
4
papers/Report/latexmkrc
Normal file
4
papers/Report/latexmkrc
Normal file
|
@ -0,0 +1,4 @@
|
|||
$pdf_mode = 4;
|
||||
@default_files = ('index.tex');
|
||||
$out_dir = 'output';
|
||||
$pdf_previewer = "zathura %O %S";
|
2285
papers/Report/references.bib
Normal file
2285
papers/Report/references.bib
Normal file
File diff suppressed because it is too large
Load diff
Loading…
Add table
Reference in a new issue