tangent space of these matrix Lie groups with the vector space needed for the Lie algebra. Continuing our program, we next introduce a basis for the tangent space.

Let $\mathfrak{B} = \{\omega_a\}, a = 1, \dots, D$ be the basis for $\mathcal{T}_e(\mathcal{G})$. We obtain D independent nowherevanishing vector fields on \mathcal{G} such that

$$\Omega_a(g) = L_a^*(\omega_a). \tag{4.67}$$

This is already a very strong constraint on $\mathcal{M}(G)$ because it says that there exists no other vector field on $\mathcal{M}(G)$ that may be constructed independently of the basis vector, i.e. all vectors on $\mathcal{M}(G)$ have a basis decomposition.

To see how this manifests itself on any given manifold consider the following examples.

Example. The so-called **hairy ball theorem** says that any smooth vector field on S^2 has at least two zeros. Thus $\mathcal{M}(G) \neq S^2$. In fact for dim(G) = 2, assuming G is compact, and $G \simeq U(1) \times U(1)$, the group manifold is actually a torus, \mathcal{T}^2 . This is the only Lie group of dimension 2.

Definition 4.16. $\Omega_a(g)$ with a = 1, ..., D are called **left-invariant vector fields** on \mathcal{G} , if they obey

$$L_h^*[\Omega_a(g)] = L_h^* \circ L_a^*(\omega_a) = L_{hg}^*(\omega_a) = \Omega_a(hg)$$

$$(4.68)$$

4.3.1 Lie Algebras for Matrix Lie Groups

For matrix Lie groups, $\mathcal{G} \subset \operatorname{Mat}_n(\mathbb{F})$ where $n \in \mathbb{N}$, and the fields are either real or complex. Then $\forall h \in \mathcal{G}, \forall X \in \mathcal{L}(\mathcal{G})$, we have

$$L_h^*(X) = hX \in \mathcal{T}_h(\mathcal{G}) \tag{4.69}$$

where the product is matrix multiplication.

Proof. The proof is fairly straightforward. To show that $hX \in \mathcal{T}_h(G)$, we need to check if hX is in the vector space of the Lie algebra. Starting with a curve and some initial conditions

$$C: t \in \mathbb{R} \mapsto g(t) \in \mathcal{G}, \ g(0) = e, \ \dot{g}(t) \Big|_{t=0} = X$$

$$(4.70)$$

one finds near t = 0, there exists a Taylor series expansion

$$g(t) = \mathbb{I}_n + tX + \mathcal{O}(t^2). \tag{4.71}$$

Let C' be a new curve such that

$$C': t \in \mathbb{R} \mapsto h(t) = hg(t) \in \mathcal{G}$$

$$(4.72)$$

which is guaranteed by closure of the group. Again neat t = 0, we find the expansion of h(t) to be

$$h(t) = h\mathbb{I}_n + thX + \mathcal{O}(t^2). \tag{4.73}$$

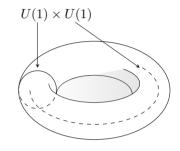


Figure 3. Group manifold of $U(1) \times U(1)$, the Torus, \mathcal{T}^2 .