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tangent space of these matrix Lie groups with the vector space needed for the Lie algebra.
Continuing our program, we next introduce a basis for the tangent space.

Let B = {Êa}, a = 1, . . . , D be the basis for Te(G). We obtain D independent nowhere–
vanishing vector fields on G such that

�a(g) = Lú
g(Êa). (4.67)

This is already a very strong constraint on M(G) because it says that there exists no other
vector field on M(G) that may be constructed independently of the basis vector, i.e. all
vectors on M(G) have a basis decomposition.

To see how this manifests itself on any given manifold consider the following examples.

Example. The so–called hairy ball theorem says that any smooth vector field on
S2 has at least two zeros. Thus M(G) ”= S2. In fact for dim(G) = 2, assuming G is
compact, and G ƒ U(1) ◊ U(1), the group manifold is actually a torus, T 2. This is
the only Lie group of dimension 2.

U(1) ◊ U(1)

Figure 3. Group manifold of

U(1) ◊ U(1), the Torus, T 2
.

Definition 4.16. �a(g) with a = 1, . . . , D are called left–invariant vector fields on
G, if they obey

Lú
h[�a(g)] = Lú

h ¶ Lú
g(Êa) = Lú

hg(Êa) = �a(hg) (4.68)

4.3.1 Lie Algebras for Matrix Lie Groups

For matrix Lie groups, G µ Matn(F) where n œ N, and the fields are either real or complex.
Then ’h œ G, ’X œ L(G), we have

Lú
h(X) = hX œ Th(G) (4.69)

where the product is matrix multiplication.

Proof. The proof is fairly straightforward. To show that hX œ Th(G), we need to
check if hX is in the vector space of the Lie algebra. Starting with a curve and some
initial conditions

C : t œ R ‘æ g(t) œ G, g(0) = e, ġ(t)
----
t=0

= X (4.70)

one finds near t = 0, there exists a Taylor series expansion

g(t) = In + tX + O(t2). (4.71)

Let C Õ be a new curve such that

C Õ : t œ R ‘æ h(t) = hg(t) œ G (4.72)

which is guaranteed by closure of the group. Again neat t = 0, we find the expansion
of h(t) to be

h(t) = hIn + thX + O(t2). (4.73)


