
PART

II

Representation Theory
Recall that an element v of a finite dimensional vector space V has a column vector repre-
sentation, if for a basis — = {u1, u2, · · · , un}, which spans the vector space, there exists a
set of scalars a1, a2, · · · , an such that v is equivalent to the sum

v =
nÿ

i=1
aiui.

If this is the case, the coordinate vector of v in the — basis is
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From here, one can delve into the subject of linear algebras and study how linear transfor-
mations or operators, such as T : V æ V , act on the vector v. In inspecting these linear
transformations, there is a natural correspondence between linear transformation of bases
vectors ui and an n ◊ n ordered grid of tuples generated from the linear map, i.e. matrices.

Matrices are a thoroughly useful object to characterize the set of linear transformations
of a vector space. Naturally, we expect that the vector space of the Lie algebra to also
benefit from such a treatment. However, the analogy which we have set up is quite crude.
First, a group is not a field, it lacks a second multiplication operation required by a field.
Therefore how such linear transformations would appear in the study of Lie groups is not
obvious. In order to study such objects, we would need a vector space of operators which
preserve the group multiplication. This is precisely the aim of representations.

Definition 4.18. Suppose G is a group, a representation is a set of non-singular ma-
trices

R(G) = {’g œ G|D(g) œ Matn(F )} (4.93)

such that elements of R satisfy

D(g1 ı g2) = D(g1)D(g2) (4.94)
D(g ı e) = D(g) = D(e ı g), (4.95)

with D(e) identified as the identity matrix.

A similar definition exists for a Lie algebra.

Definition 4.19. For any Lie algebra, g, a representation is a set of matrices

S(g) = {’X œ g| d(X) œ Matn(F)} (4.96)
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