Definition 4.13 (Injective). Left (and right) translations are injective,

$$\{\forall g, g' \in \mathcal{G} | L_h(g) = L_h(g') \iff g = g'\}$$

$$(4.62)$$

Lemma 4.4. L_h and R_h are diffeomorphisms of $\mathcal{M}(\mathcal{G})$.¹⁵

Consider a manifold that contains the identity element, e. On this manifold, let the coordinates $\{\theta^i\}$, i = 1, ..., D in some region contain the identity and a dependence of the group's elements on the parameter, θ , such that $g \equiv g(\theta) \in \mathcal{M}(\mathcal{G})$, and g(0) = e. Let $g' = g(\theta') = L_h(g) = hg(\theta)$. In these coordinates, L_h is specified by D real functions such that $\theta'^i = \theta'^i(\theta)$ with i = 1, ..., D.

Remark. L_n being a diffeomorphism implies that the Jacobian matrix,

$$J_j^i(\theta) = \frac{\partial \theta'^i}{\partial \theta^j} \tag{4.63}$$

exists and is invertible, i.e. $det(J) \neq 0$.

Diffeomorphism are known to generate a curve on a manifold connecting the points involved in a mapping. At each point on the curve, one can then assign a tangent vector and, more generally, a tangent space. These tangent space are also connected via a map known as the push–forward that are, in fact, induced by the existence of the left and right translation diffeomorphisms.

Definition 4.14. A left **push-forward**, $L_h^* : \mathcal{T}_g(G) \to \mathcal{T}_{hg}(G)$ is the map

$$V = v^{i} \frac{\partial}{\partial \theta^{i}} \in \mathcal{T}_{g}(G) \mapsto V' = v'^{i} \frac{\partial}{\partial \theta'^{i}} \in \mathcal{T}_{hg}(G)$$

$$(4.64)$$

with $v'^i = J^i_i(\theta) v^j$. Similarity for R^*_h .

From the push–forward definition, we can define a vector field generally and connect every point in the tangent space as a push–forward of the identity element.

Definition 4.15. A vector field is a map \mathcal{V} which maps every $g \in \mathcal{G}$ to a vector $V_g \in \mathcal{T}_g(\mathcal{G})$ at g. In coordinates,

$$V(\theta) = V^{i}(\theta) \frac{\partial}{\partial \theta^{i}} \in \mathcal{T}_{g(\theta)}(\mathcal{G})$$
(4.65)

is a vector field that is smooth if the components $v^i(\theta) \in \mathbb{R}$, i = 1, ..., D are differentiable.

With regards to left and right translations, starting from a tangent vector at the identity, $\omega \in \mathcal{T}_e(\mathcal{G})$, we may define a vector field

$$\Omega(g) = L_q^*(\omega) \tag{4.66}$$

for all $g \in \mathcal{G}$. As L_g^* is smooth and invertible, $\Omega(g)$ is smooth and since the Jacobian is invertible, $\Omega(g)$ is also non-vanishing. This generalizes our result from earlier. We may now describe every point on the manifold as a push-forward of the identity.

Naturally, we want to tie in how this aids in developing a Lie algebra from Lie group. As we now have a vector space, we are just a short skip and step away from identifying the 15 i.e. there exists a smooth bijection with a smooth inverse.

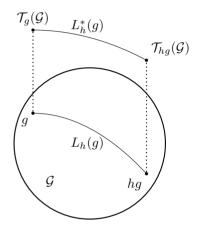


Figure 2. Visual of a push forward.