mirror of
https://github.com/vale981/HOPSFlow-Paper
synced 2025-03-06 10:11:39 -05:00
23 lines
691 B
Python
23 lines
691 B
Python
from speed_coupling_scan import *
|
|
|
|
import random
|
|
#powers = np.array([model.power().value for model in models])
|
|
powers = np.array([random.random() for model in models])
|
|
normalized_powers = powers - powers.min()
|
|
normalized_powers /= normalized_powers.max()
|
|
colors = [Blues(power) for power in normalized_powers]
|
|
ax1 = plt.gcf().add_subplot(111, projection='3d')
|
|
|
|
_xx, _yy = np.meshgrid(δs, τ_Is)
|
|
x, y = _xx.ravel(), _yy.ravel()
|
|
dx = (δs[1] - δs[0])
|
|
dy = (τ_Is[1] - τ_Is[0])
|
|
x -= dx /2
|
|
y -= dy /2
|
|
ax1.bar3d(x, y, np.zeros_like(powers), dx, dy, powers, color=colors)
|
|
ax1.set_xticks(δs)
|
|
ax1.set_yticks(τ_Is)
|
|
|
|
ax1.set_xlabel(r"$\delta$")
|
|
ax1.set_ylabel(r"$\tau_I$")
|
|
ax1.set_zlabel(r"$P$")
|