mirror of
https://github.com/vale981/HOPSFlow-Paper
synced 2025-03-06 10:11:39 -05:00
226 lines
5.6 KiB
Python
226 lines
5.6 KiB
Python
import matplotlib.pyplot as plt
|
||
import plot_utils as pu
|
||
from hiro_models.otto_cycle import OttoEngine
|
||
import numpy as np
|
||
import figsaver as fs
|
||
import hiro_models.model_auxiliary as aux
|
||
from typing import Iterable
|
||
|
||
|
||
@pu.wrap_plot
|
||
def plot_cycle(model: OttoEngine, ax=None):
|
||
assert ax is not None
|
||
ax.plot(
|
||
model.t, model.coupling_operators[0].operator_norm(model.t) * 2, label=r"$L_c$"
|
||
)
|
||
ax.plot(
|
||
model.t, model.coupling_operators[1].operator_norm(model.t) * 2, label=r"$L_h$"
|
||
)
|
||
|
||
ax.plot(
|
||
model.t,
|
||
(model.H.operator_norm(model.t)) / model.H.operator_norm(model.τ_compressed),
|
||
label="H",
|
||
)
|
||
|
||
ax.set_xlim((0, model.Θ))
|
||
ax.set_xlabel(r"$\tau$")
|
||
ax.set_ylabel(r"Operator Norm")
|
||
ax.legend()
|
||
|
||
|
||
@pu.wrap_plot
|
||
def plot_cycles(models: list[OttoEngine], ax=None, H_for_all=False, L_for_all=True):
|
||
assert ax is not None
|
||
|
||
model = models[0]
|
||
|
||
ax.plot(
|
||
model.t,
|
||
(model.H.operator_norm(model.t)) / model.H.operator_norm(model.τ_compressed),
|
||
label=f"$H_1$",
|
||
)
|
||
|
||
ax.plot(
|
||
model.t,
|
||
model.coupling_operators[0].operator_norm(model.t) * 2,
|
||
label=r"$L_{c,1}$",
|
||
)
|
||
ax.plot(
|
||
model.t,
|
||
model.coupling_operators[1].operator_norm(model.t) * 2,
|
||
label=r"$L_{h,1}$",
|
||
)
|
||
|
||
ax.set_xlim((0, model.Θ))
|
||
ax.set_xlabel(r"$\tau$")
|
||
ax.set_ylabel(r"Operator Norm")
|
||
|
||
for i, model in enumerate(models[1:]):
|
||
if H_for_all:
|
||
ax.plot(
|
||
model.t,
|
||
(model.H.operator_norm(model.t))
|
||
/ model.H.operator_norm(model.τ_compressed),
|
||
label=f"$H_1$",
|
||
)
|
||
|
||
if L_for_all:
|
||
ax.plot(
|
||
model.t,
|
||
model.coupling_operators[0].operator_norm(model.t) * 2,
|
||
label=rf"$L_{{c,{i+2}}}$",
|
||
)
|
||
ax.plot(
|
||
model.t,
|
||
model.coupling_operators[1].operator_norm(model.t) * 2,
|
||
label=rf"$L_{{h,{i+2}}}$",
|
||
)
|
||
|
||
ax.legend()
|
||
|
||
|
||
@pu.wrap_plot
|
||
def plot_sd_overview(model: OttoEngine, ax=None):
|
||
assert ax is not None
|
||
|
||
gaps = model.energy_gaps
|
||
ω = np.linspace(0.0001, gaps[-1] + gaps[0], 1000)
|
||
|
||
for ω_i, label, i in zip(gaps, ["Cold", "Hot"], range(len(gaps))):
|
||
lines = ax.plot(
|
||
ω,
|
||
model.full_thermal_spectral_density(i)(ω) * model.bcf_scales[i],
|
||
label=f"{label} $T={model.T[i]}$",
|
||
)
|
||
|
||
ax.plot(
|
||
ω,
|
||
model.spectral_density(i)(ω) * model.bcf_scales[i],
|
||
label=f"{label} $T=0$",
|
||
color=pu.lighten_color(lines[0].get_color()),
|
||
linestyle="--",
|
||
)
|
||
|
||
ax.plot(
|
||
ω_i,
|
||
model.full_thermal_spectral_density(i)(ω_i) * model.bcf_scales[i],
|
||
marker="o",
|
||
color=lines[0].get_color(),
|
||
)
|
||
|
||
# plt.plot(ω, model.full_thermal_spectral_density(1)(ω) * model.bcf_scales[1])
|
||
# plt.plot(
|
||
# 2, model.full_thermal_spectral_density(1)(2) * model.bcf_scales[1], marker="o"
|
||
# )
|
||
|
||
ax.set_xlabel(r"$\omega$")
|
||
ax.set_ylabel(r"Spectral Density")
|
||
ax.legend()
|
||
|
||
|
||
def full_report(model):
|
||
cyc = plot_cycle(model)
|
||
sd = plot_sd_overview(model)
|
||
|
||
f, a = plot_energy(model)
|
||
pu.plot_with_σ(model.t, model.total_energy(), ax=a)
|
||
|
||
power = model.power()
|
||
η = model.efficiency() * 100
|
||
|
||
print(
|
||
fs.tex_value(power.value, err=power.σ, prefix="P="),
|
||
)
|
||
print(
|
||
fs.tex_value(η.value, err=η.σ, prefix=r"\eta="),
|
||
)
|
||
|
||
|
||
def plot_energy(model):
|
||
f, a = pu.plot_energy_overview(
|
||
model,
|
||
strobe_frequency=model.Ω,
|
||
hybrid=True,
|
||
bath_names=["Cold", "Hot"],
|
||
online=True,
|
||
)
|
||
|
||
a.legend()
|
||
|
||
return f, a
|
||
|
||
|
||
def integrate_online(model, n, stream_folder=None, **kwargs):
|
||
aux.integrate(
|
||
model,
|
||
n,
|
||
stream_file=("" if stream_folder is None else stream_folder)
|
||
+ f"results_{model.hexhash}.fifo",
|
||
analyze=True,
|
||
**kwargs,
|
||
)
|
||
|
||
|
||
def integrate_online_multi(models, n, *args, increment=1000, **kwargs):
|
||
target = increment
|
||
|
||
while target < (n + target):
|
||
for model in models:
|
||
integrate_online(model, min([n, target]), *args, **kwargs)
|
||
|
||
target += increment
|
||
|
||
|
||
def plot_3d_heatmap(models, value_accessor, x_spec, y_spec):
|
||
f, _ = plt.subplots()
|
||
|
||
ax1 = plt.gcf().add_subplot(111, projection="3d")
|
||
|
||
value_dict = {}
|
||
x_labels = set()
|
||
y_labels = set()
|
||
|
||
for model in models:
|
||
x_label = x_spec(model)
|
||
y_label = y_spec(model)
|
||
value = value_accessor(model)
|
||
|
||
if x_label not in value_dict:
|
||
value_dict[x_label] = {}
|
||
|
||
if y_label in value_dict[x_label]:
|
||
raise ValueError(
|
||
f"Dublicate value for model with x={x_label}, y={y_label}."
|
||
)
|
||
|
||
value_dict[x_label][y_label] = value_accessor(model)
|
||
|
||
x_labels.add(x_label)
|
||
y_labels.add(y_label)
|
||
|
||
x_labels = np.sort(list(x_labels))
|
||
y_labels = np.sort(list(y_labels))
|
||
|
||
_xx, _yy = np.meshgrid(x_labels, y_labels, indexing="ij")
|
||
x, y = _xx.ravel(), _yy.ravel()
|
||
|
||
values = np.fromiter((value_dict[_x][_y] for _x, _y in zip(x, y)), dtype=float)
|
||
|
||
dx = x_labels[1] - x_labels[0]
|
||
dy = y_labels[1] - y_labels[0]
|
||
|
||
x -= dx / 2
|
||
y -= dy / 2
|
||
|
||
normalized_values = abs(values) - abs(values).min()
|
||
normalized_values /= abs(normalized_values).max()
|
||
|
||
cmap = plt.get_cmap("plasma")
|
||
colors = [cmap(power) for power in normalized_values]
|
||
|
||
ax1.bar3d(x, y, np.zeros_like(values), dx, dy, values, color=colors)
|
||
ax1.set_xticks(x_labels)
|
||
ax1.set_yticks(y_labels)
|
||
|
||
return f, ax1
|