mirror of
https://github.com/vale981/HOPSFlow-Paper
synced 2025-03-04 09:11:40 -05:00
monster commit
This commit is contained in:
parent
77e3bbaabd
commit
8be5d72685
14 changed files with 7671 additions and 4792 deletions
69
project.org
69
project.org
|
@ -107,7 +107,6 @@ All nice and good, but we need concrete plans.
|
|||
|
||||
***** TODO Cycle Length + Coupling Strength
|
||||
:LOGBOOK:
|
||||
CLOCK: [2022-12-12 Mon 15:39]
|
||||
CLOCK: [2022-12-12 Mon 14:45]--[2022-12-12 Mon 15:34] => 0:49
|
||||
CLOCK: [2022-12-12 Mon 14:05]--[2022-12-12 Mon 14:40] => 0:35
|
||||
CLOCK: [2022-12-12 Mon 13:29]--[2022-12-12 Mon 13:58] => 0:29
|
||||
|
@ -172,69 +171,5 @@ CLOCK: [2022-11-24 Thu 11:51]--[2022-11-24 Thu 12:06] => 0:15
|
|||
** TODO sort out richards libraries
|
||||
|
||||
* Nice to Haves
|
||||
** HOLD test online calc
|
||||
** HOLD test dynamic matrix
|
||||
|
||||
* Clock Report
|
||||
- the first days are pretty broken. emacs crashed etc...
|
||||
|
||||
#+BEGIN: clocktable :scope file :step day :tstart "<-1w>" :tend "<now>" :compact nil
|
||||
|
||||
Daily report: [2022-11-21 Mon]
|
||||
| Headline | Time |
|
||||
|--------------+--------|
|
||||
| *Total time* | *0:00* |
|
||||
|
||||
Daily report: [2022-11-22 Tue]
|
||||
| Headline | Time |
|
||||
|--------------+--------|
|
||||
| *Total time* | *0:00* |
|
||||
|
||||
Daily report: [2022-11-23 Wed]
|
||||
| Headline | Time | |
|
||||
|----------------+--------+------|
|
||||
| *Total time* | *1:49* | |
|
||||
|----------------+--------+------|
|
||||
| Tasks | 1:49 | |
|
||||
| \_ Merge HOPS | | 1:49 |
|
||||
|
||||
Daily report: [2022-11-24 Thu]
|
||||
| Headline | Time | |
|
||||
|------------------------------------------+--------+------|
|
||||
| *Total time* | *2:01* | |
|
||||
|------------------------------------------+--------+------|
|
||||
| Tasks | 2:01 | |
|
||||
| \_ Merge HOPS | | 0:03 |
|
||||
| \_ Set up HO calcs with online analysis | | 1:58 |
|
||||
|
||||
Daily report: [2022-11-25 Fri]
|
||||
| Headline | Time | |
|
||||
|------------------------------------------+--------+------|
|
||||
| *Total time* | *2:00* | |
|
||||
|------------------------------------------+--------+------|
|
||||
| Tasks | 2:00 | |
|
||||
| \_ Set up HO calcs with online analysis | | 2:00 |
|
||||
|
||||
Daily report: [2022-11-26 Sat]
|
||||
| Headline | Time | |
|
||||
|------------------------------------------+--------+------|
|
||||
| *Total time* | *1:52* | |
|
||||
|------------------------------------------+--------+------|
|
||||
| Tasks | 1:52 | |
|
||||
| \_ Set up HO calcs with online analysis | | 1:52 |
|
||||
|
||||
Daily report: [2022-11-27 Sun]
|
||||
| Headline | Time |
|
||||
|--------------+--------|
|
||||
| *Total time* | *0:00* |
|
||||
|
||||
Daily report: [2022-11-28 Mon]
|
||||
| Headline | Time | |
|
||||
|------------------------------------------+--------+------|
|
||||
| *Total time* | *3:44* | |
|
||||
|------------------------------------------+--------+------|
|
||||
| Outline | 1:35 | |
|
||||
| \_ Application | | 1:35 |
|
||||
| Tasks | 2:09 | |
|
||||
| \_ Set up HO calcs with online analysis | | 2:09 |
|
||||
#+END:
|
||||
** SOMEDAY test online calc
|
||||
** SOMEDAY test dynamic matrix
|
||||
|
|
|
@ -41,3 +41,47 @@ model = OttoEngine(
|
|||
streaming_mode=True,
|
||||
# solver_args=dict(rtol=1e-3, atol=1e-3)
|
||||
)
|
||||
|
||||
import figsaver as fs
|
||||
import plot_utils as pu
|
||||
from hiro_models.one_qubit_model import StocProcTolerances
|
||||
from hiro_models.otto_cycle import OttoEngine
|
||||
import hiro_models.model_auxiliary as aux
|
||||
import numpy as np
|
||||
import qutip as qt
|
||||
import utilities as ut
|
||||
import stocproc
|
||||
import matplotlib.pyplot as plt
|
||||
import otto_utilities as ot
|
||||
|
||||
import ray
|
||||
ray.shutdown()
|
||||
|
||||
#ray.init(address='auto')
|
||||
ray.init()
|
||||
from hops.util.logging_setup import logging_setup
|
||||
import logging
|
||||
logging_setup(logging.INFO)
|
||||
plt.rcParams['figure.figsize'] = (12,4)
|
||||
|
||||
model = OttoEngine(
|
||||
δ=[0.4, 0.4],
|
||||
ω_c=[1, 1],
|
||||
ψ_0=qt.basis([2], [1]),
|
||||
description=f"A basic near-markovian, weakly coupled Otto Cycle that actually works.",
|
||||
k_max=4,
|
||||
bcf_terms=[6] * 2,
|
||||
truncation_scheme="simplex",
|
||||
driving_process_tolerances=[StocProcTolerances(1e-4, 1e-4)] * 2,
|
||||
thermal_process_tolerances=[StocProcTolerances(1e-4, 1e-4)] * 2,
|
||||
T=[1, 10],
|
||||
therm_methods=["tanhsinh", "fft"],
|
||||
Δ=1,
|
||||
num_cycles=5,
|
||||
Θ=1.5 / 0.05,
|
||||
dt=0.001,
|
||||
timings_H=(0, 0.1, 0.5, 0.6),
|
||||
timings_L=((0.6, 0.7, 0.9, 1), (0.1, 0.2, 0.4, 0.5)),
|
||||
streaming_mode=True,
|
||||
# solver_args=dict(rtol=1e-3, atol=1e-3)
|
||||
)
|
||||
|
|
|
@ -42,3 +42,48 @@ model = OttoEngine(
|
|||
)
|
||||
|
||||
ot.plot_cycle(model)
|
||||
|
||||
import figsaver as fs
|
||||
import plot_utils as pu
|
||||
from hiro_models.one_qubit_model import StocProcTolerances
|
||||
from hiro_models.otto_cycle import OttoEngine
|
||||
import hiro_models.model_auxiliary as aux
|
||||
import numpy as np
|
||||
import qutip as qt
|
||||
import utilities as ut
|
||||
import stocproc
|
||||
import matplotlib.pyplot as plt
|
||||
import otto_utilities as ot
|
||||
|
||||
import ray
|
||||
ray.shutdown()
|
||||
|
||||
#ray.init(address='auto')
|
||||
ray.init()
|
||||
from hops.util.logging_setup import logging_setup
|
||||
import logging
|
||||
logging_setup(logging.INFO)
|
||||
plt.rcParams['figure.figsize'] = (12,4)
|
||||
|
||||
model = OttoEngine(
|
||||
δ=[0.4, 0.4],
|
||||
ω_c=[1, 1],
|
||||
ψ_0=qt.basis([2], [1]),
|
||||
description=f"A basic near-markovian, weakly coupled Otto Cycle that actually works.",
|
||||
k_max=4,
|
||||
bcf_terms=[6] * 2,
|
||||
truncation_scheme="simplex",
|
||||
driving_process_tolerances=[StocProcTolerances(1e-4, 1e-4)] * 2,
|
||||
thermal_process_tolerances=[StocProcTolerances(1e-4, 1e-4)] * 2,
|
||||
T=[1, 10],
|
||||
therm_methods=["tanhsinh", "fft"],
|
||||
Δ=1,
|
||||
num_cycles=5,
|
||||
Θ=1.5 / 0.05,
|
||||
dt=0.001,
|
||||
timings_H=(0, 0.1, 0.5, 0.6),
|
||||
timings_L=(None, None),
|
||||
streaming_mode=True,
|
||||
)
|
||||
|
||||
ot.plot_cycle(model)
|
||||
|
|
|
@ -97,3 +97,103 @@ model_fft.therm_methods = ["fft", "fft"]
|
|||
ot.plot_cycle(model)
|
||||
|
||||
ot.plot_sd_overview(model)
|
||||
|
||||
import figsaver as fs
|
||||
import plot_utils as pu
|
||||
from hiro_models.one_qubit_model import StocProcTolerances
|
||||
from hiro_models.otto_cycle import OttoEngine
|
||||
import hiro_models.model_auxiliary as aux
|
||||
import numpy as np
|
||||
import qutip as qt
|
||||
import utilities as ut
|
||||
import stocproc
|
||||
import matplotlib.pyplot as plt
|
||||
import otto_utilities as ot
|
||||
|
||||
import ray
|
||||
ray.shutdown()
|
||||
|
||||
#ray.init(address='auto')
|
||||
ray.init()
|
||||
from hops.util.logging_setup import logging_setup
|
||||
import logging
|
||||
logging_setup(logging.INFO)
|
||||
plt.rcParams['figure.figsize'] = (12,4)
|
||||
|
||||
model = OttoEngine(
|
||||
δ=[0.4, 0.4],
|
||||
ω_c=[1, 1],
|
||||
ψ_0=qt.basis([2], [1]),
|
||||
description=f"A basic near-markovian, weakly coupled Otto Cycle that actually works.",
|
||||
k_max=4,
|
||||
bcf_terms=[6] * 2,
|
||||
truncation_scheme="simplex",
|
||||
driving_process_tolerances=[StocProcTolerances(1e-4, 1e-4)] * 2,
|
||||
thermal_process_tolerances=[StocProcTolerances(1e-4, 1e-4)] * 2,
|
||||
T=[1, 10],
|
||||
therm_methods=["tanhsinh", "tanhsinh"],
|
||||
Δ=1,
|
||||
num_cycles=5,
|
||||
Θ=1.5 / 0.05,
|
||||
dt=0.001,
|
||||
timings_H=(0, 0.1, 0.5, 0.6),
|
||||
timings_L=((0.6, 0.7, 0.9, 1), (0.1, 0.2, 0.4, 0.5)),
|
||||
streaming_mode=True,
|
||||
shift_to_resonance=(False, False),
|
||||
# solver_args=dict(rtol=1e-3, atol=1e-3)
|
||||
)
|
||||
ot.plot_cycle(model)
|
||||
|
||||
ot.plot_sd_overview(model)
|
||||
|
||||
import figsaver as fs
|
||||
import plot_utils as pu
|
||||
from hiro_models.one_qubit_model import StocProcTolerances
|
||||
from hiro_models.otto_cycle import OttoEngine
|
||||
import hiro_models.model_auxiliary as aux
|
||||
import numpy as np
|
||||
import qutip as qt
|
||||
import utilities as ut
|
||||
import stocproc
|
||||
import matplotlib.pyplot as plt
|
||||
import otto_utilities as ot
|
||||
|
||||
import ray
|
||||
ray.shutdown()
|
||||
|
||||
#ray.init(address='auto')
|
||||
ray.init()
|
||||
from hops.util.logging_setup import logging_setup
|
||||
import logging
|
||||
logging_setup(logging.INFO)
|
||||
plt.rcParams['figure.figsize'] = (12,4)
|
||||
|
||||
model = OttoEngine(
|
||||
δ=[0.4, 0.4],
|
||||
ω_c=[2, 2],
|
||||
ψ_0=qt.basis([2], [1]),
|
||||
description=f"A basic near-markovian, weakly coupled Otto Cycle without the shift.",
|
||||
k_max=3,
|
||||
bcf_terms=[4] * 2,
|
||||
truncation_scheme="simplex",
|
||||
driving_process_tolerances=[StocProcTolerances(1e-4, 1e-4)] * 2,
|
||||
thermal_process_tolerances=[StocProcTolerances(1e-4, 1e-4)] * 2,
|
||||
T=[0, 2],
|
||||
therm_methods=["tanhsinh", "tanhsinh"],
|
||||
Δ=1,
|
||||
num_cycles=1,
|
||||
Θ=1.5 / 0.05,
|
||||
dt=0.001,
|
||||
timings_H=(0, 0.1, 0.5, 0.6),
|
||||
timings_L=((0.6, 0.7, 0.9, 1), (0.1, 0.2, 0.4, 0.5)),
|
||||
streaming_mode=True,
|
||||
shift_to_resonance=(False, False),
|
||||
#ω_s_extra=[.1, .1],
|
||||
)
|
||||
|
||||
model_fft = model.copy()
|
||||
model_fft.therm_methods = ["fft", "fft"]
|
||||
|
||||
ot.plot_cycle(model)
|
||||
|
||||
ot.plot_sd_overview(model)
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -19,3 +19,25 @@ from hops.util.logging_setup import logging_setup
|
|||
import logging
|
||||
logging_setup(logging.INFO)
|
||||
plt.rcParams['figure.figsize'] = (12,4)
|
||||
|
||||
import figsaver as fs
|
||||
import plot_utils as pu
|
||||
from hiro_models.one_qubit_model import StocProcTolerances
|
||||
from hiro_models.otto_cycle import OttoEngine
|
||||
import hiro_models.model_auxiliary as aux
|
||||
import numpy as np
|
||||
import qutip as qt
|
||||
import utilities as ut
|
||||
import stocproc
|
||||
import matplotlib.pyplot as plt
|
||||
import otto_utilities as ot
|
||||
|
||||
import ray
|
||||
ray.shutdown()
|
||||
|
||||
#ray.init(address='auto')
|
||||
ray.init()
|
||||
from hops.util.logging_setup import logging_setup
|
||||
import logging
|
||||
logging_setup(logging.INFO)
|
||||
plt.rcParams['figure.figsize'] = (12,4)
|
||||
|
|
|
@ -165,20 +165,15 @@ def integrate_online(model, n, stream_folder=None, **kwargs):
|
|||
def integrate_online_multi(models, n, *args, increment=1000, **kwargs):
|
||||
target = increment
|
||||
|
||||
samples = []
|
||||
|
||||
while target < (n + target):
|
||||
for model, s in zip(models, samples):
|
||||
for model in models:
|
||||
integrate_online(model, min([n, target]), *args, **kwargs)
|
||||
|
||||
target += increment
|
||||
|
||||
|
||||
def plot_3d_heatmap(models, value_accessor, x_spec, y_spec):
|
||||
f, _ = plt.subplots()
|
||||
|
||||
ax1 = plt.gcf().add_subplot(111, projection="3d")
|
||||
|
||||
@pu.wrap_plot
|
||||
def plot_3d_heatmap(models, value_accessor, x_spec, y_spec, normalize=False, ax=None):
|
||||
value_dict = {}
|
||||
x_labels = set()
|
||||
y_labels = set()
|
||||
|
@ -221,8 +216,21 @@ def plot_3d_heatmap(models, value_accessor, x_spec, y_spec):
|
|||
cmap = plt.get_cmap("plasma")
|
||||
colors = [cmap(power) for power in normalized_values]
|
||||
|
||||
ax1.bar3d(x, y, np.zeros_like(values), dx, dy, values, color=colors)
|
||||
ax1.set_xticks(x_labels)
|
||||
ax1.set_yticks(y_labels)
|
||||
ax.bar3d(
|
||||
x,
|
||||
y,
|
||||
np.zeros_like(values),
|
||||
dx,
|
||||
dy,
|
||||
values / abs(values).max() if normalize else values,
|
||||
color=colors,
|
||||
)
|
||||
ax.set_xticks(x_labels)
|
||||
ax.set_yticks(y_labels)
|
||||
|
||||
return f, ax1
|
||||
|
||||
def val_relative_to_steady(model, val, steady_idx):
|
||||
begin_idx = model.strobe[1][steady_idx]
|
||||
return model.t[begin_idx:], (
|
||||
val.slice(slice(begin_idx - 1, -1, 1)) - val.slice(begin_idx - 1)
|
||||
)
|
||||
|
|
101
python/otto_motor/poetry.lock
generated
101
python/otto_motor/poetry.lock
generated
|
@ -67,9 +67,23 @@ category = "main"
|
|||
optional = false
|
||||
python-versions = "*"
|
||||
|
||||
[[package]]
|
||||
name = "bayesian-optimization"
|
||||
version = "1.4.2"
|
||||
description = "Bayesian Optimization package"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = ">= 3.7"
|
||||
|
||||
[package.dependencies]
|
||||
colorama = ">=0.4.6"
|
||||
numpy = ">=1.9.0"
|
||||
scikit-learn = ">=0.18.0"
|
||||
scipy = ">=1.0.0"
|
||||
|
||||
[[package]]
|
||||
name = "beartype"
|
||||
version = "0.12.0"
|
||||
version = "0.12.1"
|
||||
description = "Unbearably fast runtime type checking in pure Python."
|
||||
category = "main"
|
||||
optional = false
|
||||
|
@ -78,8 +92,8 @@ develop = false
|
|||
|
||||
[package.extras]
|
||||
all = ["typing_extensions (>=3.10.0.0)"]
|
||||
dev = ["autoapi (>=0.9.0)", "coverage (>=5.5)", "mypy (>=0.800)", "numpy", "pytest (>=4.0.0)", "sphinx", "sphinx (>=4.1.0)", "tox (>=3.20.1)", "typing_extensions"]
|
||||
doc-rtd = ["furo (==2022.6.21)", "sphinx (==4.1.0)"]
|
||||
dev = ["autoapi (>=0.9.0)", "coverage (>=5.5)", "furo (>=2022.6.21)", "mypy (>=0.800)", "numpy", "pytest (>=4.0.0)", "sphinx", "sphinx (>=4.2.0)", "tox (>=3.20.1)", "typing_extensions"]
|
||||
doc-rtd = ["autoapi (>=0.9.0)", "furo (>=2022.6.21)", "sphinx (>=4.2.0)"]
|
||||
test-tox = ["mypy (>=0.800)", "numpy", "pytest (>=4.0.0)", "sphinx", "typing_extensions"]
|
||||
test-tox-coverage = ["coverage (>=5.5)"]
|
||||
|
||||
|
@ -87,7 +101,7 @@ test-tox-coverage = ["coverage (>=5.5)"]
|
|||
type = "git"
|
||||
url = "https://github.com/beartype/beartype"
|
||||
reference = "main"
|
||||
resolved_reference = "e69d7553a0f73746afe1f16eba551a31115f51f2"
|
||||
resolved_reference = "09a48e8b07bf9faa1409aea7d24f49e6129fda1f"
|
||||
|
||||
[[package]]
|
||||
name = "binfootprint"
|
||||
|
@ -372,7 +386,7 @@ qutip = "^4.6.3"
|
|||
type = "git"
|
||||
url = "git@github.com:vale981/two_qubit_model.git"
|
||||
reference = "main"
|
||||
resolved_reference = "86ef9fa64661c31f30d64efc440f87282061abdd"
|
||||
resolved_reference = "17c12cd8c99ae9c6c1076b2b16912e3bea3e6fba"
|
||||
|
||||
[[package]]
|
||||
name = "hops"
|
||||
|
@ -407,7 +421,7 @@ plotting = ["matplotlib (>=3.5.0,<4.0.0)"]
|
|||
type = "git"
|
||||
url = "git@gitlab.hrz.tu-chemnitz.de:s8896854--tu-dresden.de/hops.git"
|
||||
reference = "main"
|
||||
resolved_reference = "573274ec04be0a65f0e035885ce387247887b1e8"
|
||||
resolved_reference = "768c58683e3f944da1bc0be54ea062f49141b5e8"
|
||||
|
||||
[[package]]
|
||||
name = "hopsflow"
|
||||
|
@ -433,7 +447,7 @@ tqdm = "^4.62.3"
|
|||
type = "git"
|
||||
url = "https://github.com/vale981/hopsflow"
|
||||
reference = "main"
|
||||
resolved_reference = "30f42cd654d5a525e823d55e60a6d2a68fe91875"
|
||||
resolved_reference = "800b3e2c4a5ab0c3a956c74a19c3b824897332e4"
|
||||
|
||||
[[package]]
|
||||
name = "humanfriendly"
|
||||
|
@ -505,6 +519,14 @@ docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alab
|
|||
qa = ["flake8 (==3.8.3)", "mypy (==0.782)"]
|
||||
testing = ["Django (<3.1)", "attrs", "colorama", "docopt", "pytest (<7.0.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "joblib"
|
||||
version = "1.2.0"
|
||||
description = "Lightweight pipelining with Python functions"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
|
||||
[[package]]
|
||||
name = "jsonschema"
|
||||
version = "4.17.3"
|
||||
|
@ -944,6 +966,26 @@ urllib3 = ">=1.21.1,<1.27"
|
|||
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
|
||||
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
|
||||
|
||||
[[package]]
|
||||
name = "scikit-learn"
|
||||
version = "1.2.1"
|
||||
description = "A set of python modules for machine learning and data mining"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
|
||||
[package.dependencies]
|
||||
joblib = ">=1.1.1"
|
||||
numpy = ">=1.17.3"
|
||||
scipy = ">=1.3.2"
|
||||
threadpoolctl = ">=2.0.0"
|
||||
|
||||
[package.extras]
|
||||
benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"]
|
||||
docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=4.0.1)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"]
|
||||
examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"]
|
||||
tests = ["black (>=22.3.0)", "flake8 (>=3.8.2)", "matplotlib (>=3.1.3)", "mypy (>=0.961)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=5.3.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.16.2)"]
|
||||
|
||||
[[package]]
|
||||
name = "scipy"
|
||||
version = "1.8.1"
|
||||
|
@ -1093,6 +1135,14 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
|
|||
[package.extras]
|
||||
widechars = ["wcwidth"]
|
||||
|
||||
[[package]]
|
||||
name = "threadpoolctl"
|
||||
version = "3.1.0"
|
||||
description = "threadpoolctl"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
|
||||
[[package]]
|
||||
name = "tomli"
|
||||
version = "1.2.3"
|
||||
|
@ -1212,7 +1262,7 @@ python-versions = "*"
|
|||
[metadata]
|
||||
lock-version = "1.1"
|
||||
python-versions = ">=3.9,<3.11"
|
||||
content-hash = "4cef9d772d2030a78b143bed3b00a87586bfb95e08673f5b740dad33856ead15"
|
||||
content-hash = "6b3cbda9dcdbfa846987bc7a4293e3976438ab5b8820e924d4c7be02fe4cb83e"
|
||||
|
||||
[metadata.files]
|
||||
aiosignal = [
|
||||
|
@ -1239,6 +1289,10 @@ backcall = [
|
|||
{file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"},
|
||||
{file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"},
|
||||
]
|
||||
bayesian-optimization = [
|
||||
{file = "bayesian-optimization-1.4.2.tar.gz", hash = "sha256:4e4e98cd0f0fb716202ea4c3b9e7c4c530270e69aa26f0eaf6ef715328f89c04"},
|
||||
{file = "bayesian_optimization-1.4.2-py3-none-any.whl", hash = "sha256:c42a490eff0eea9f80d32c18d18f0ee4f2896390724cec57945f94dc0a267697"},
|
||||
]
|
||||
beartype = []
|
||||
binfootprint = []
|
||||
black = [
|
||||
|
@ -1573,6 +1627,10 @@ jedi = [
|
|||
{file = "jedi-0.18.2-py2.py3-none-any.whl", hash = "sha256:203c1fd9d969ab8f2119ec0a3342e0b49910045abe6af0a3ae83a5764d54639e"},
|
||||
{file = "jedi-0.18.2.tar.gz", hash = "sha256:bae794c30d07f6d910d32a7048af09b5a39ed740918da923c6b780790ebac612"},
|
||||
]
|
||||
joblib = [
|
||||
{file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"},
|
||||
{file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"},
|
||||
]
|
||||
jsonschema = [
|
||||
{file = "jsonschema-4.17.3-py3-none-any.whl", hash = "sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"},
|
||||
{file = "jsonschema-4.17.3.tar.gz", hash = "sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d"},
|
||||
|
@ -2106,6 +2164,29 @@ requests = [
|
|||
{file = "requests-2.28.1-py3-none-any.whl", hash = "sha256:8fefa2a1a1365bf5520aac41836fbee479da67864514bdb821f31ce07ce65349"},
|
||||
{file = "requests-2.28.1.tar.gz", hash = "sha256:7c5599b102feddaa661c826c56ab4fee28bfd17f5abca1ebbe3e7f19d7c97983"},
|
||||
]
|
||||
scikit-learn = [
|
||||
{file = "scikit-learn-1.2.1.tar.gz", hash = "sha256:fbf8a5c893c9b4b99bcc7ed8fb3e8500957a113f4101860386d06635520f7cfb"},
|
||||
{file = "scikit_learn-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bed9f75763bd392c094bf474c7ab75a01d68b15146ea7a20c0f9ff6fb3063dad"},
|
||||
{file = "scikit_learn-1.2.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:c9285275a435d1f8f47bbe3500346ab9ead2499e0e090518404d318ea90d1c1c"},
|
||||
{file = "scikit_learn-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc838b5a4057c55ba81b82316ea8bf443af445f96eb21500b0e40618017e0923"},
|
||||
{file = "scikit_learn-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8bcd303dd982494842a3f482f844d539484c6043b4eed896b43ea8e5f609a21"},
|
||||
{file = "scikit_learn-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:a9abf17d177df54e529154f26acfd42930e19117d045e8a9a8e893ca82dd94ec"},
|
||||
{file = "scikit_learn-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:70fa30d146b7e9d0c256e73e271b3e17f23123b7c4adcbde1a385031adf59090"},
|
||||
{file = "scikit_learn-1.2.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5a8111f3c7a314017ebf90d6feab861c11d1ca14f3dbafb39abcc31aa4c54ba6"},
|
||||
{file = "scikit_learn-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cba0c7c6bf1493f8ce670bab69f9317874826ee838988de377ae355abd4d74cf"},
|
||||
{file = "scikit_learn-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:479aedd0abedbda6b8b4529145fe4cd8622f69f726a72cef8f75548a93eeb1e1"},
|
||||
{file = "scikit_learn-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:5523e21ab2b4d52b2bd41bedd335dbe8f3c1b5f6dd7c9c001b2e17ec9818af8d"},
|
||||
{file = "scikit_learn-1.2.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:dcfab6a19b236194af88771d8e6e778a60c3339248ab0018696ebf2b7c8bed4b"},
|
||||
{file = "scikit_learn-1.2.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:559f66e12f93b34c8c85c0a5728c3b8af98f04eb12f2c9ee18ea3c82c3d2fad1"},
|
||||
{file = "scikit_learn-1.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbb7831b2308c67bb6dd83c5ea3cdaf8e8cafd2de4000b93d78bb689126bd2cf"},
|
||||
{file = "scikit_learn-1.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2c5d9930ced2b7821ad936b9940706ccb5471d89b8a516bb641cec87257d1c"},
|
||||
{file = "scikit_learn-1.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:54731e2c2fbff40da6d76cbb9022ace5f44a4020a10bd5cd92107e86882bad15"},
|
||||
{file = "scikit_learn-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d00e46a2a7fce6e118ed0f4c6263785bf6c297a94ffd0cd7b32455043c508cc8"},
|
||||
{file = "scikit_learn-1.2.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da0e2d50a8435ea8dc5cd21f1fc1a45d329bae03dcca92087ebed859d22d184e"},
|
||||
{file = "scikit_learn-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:61bb9c654b5d2e6cdd4b1c7e6048fc66270c1682bda1b0f7d2726fdae09010f4"},
|
||||
{file = "scikit_learn-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0ee4d4d32c94e082344308528f7b3c9294b60ab19c84eb37a2d9c88bdffd9d1"},
|
||||
{file = "scikit_learn-1.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:c722f3446ad8c4f1a93b2399fe1a188635b94709a3f25e6f4d61efbe75fe8eaa"},
|
||||
]
|
||||
scipy = [
|
||||
{file = "scipy-1.8.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:65b77f20202599c51eb2771d11a6b899b97989159b7975e9b5259594f1d35ef4"},
|
||||
{file = "scipy-1.8.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e013aed00ed776d790be4cb32826adb72799c61e318676172495383ba4570aa4"},
|
||||
|
@ -2203,6 +2284,10 @@ tabulate = [
|
|||
{file = "tabulate-0.8.10-py3-none-any.whl", hash = "sha256:0ba055423dbaa164b9e456abe7920c5e8ed33fcc16f6d1b2f2d152c8e1e8b4fc"},
|
||||
{file = "tabulate-0.8.10.tar.gz", hash = "sha256:6c57f3f3dd7ac2782770155f3adb2db0b1a269637e42f27599925e64b114f519"},
|
||||
]
|
||||
threadpoolctl = [
|
||||
{file = "threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"},
|
||||
{file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"},
|
||||
]
|
||||
tomli = [
|
||||
{file = "tomli-1.2.3-py3-none-any.whl", hash = "sha256:e3069e4be3ead9668e21cb9b074cd948f7b3113fd9c8bba083f48247aab8b11c"},
|
||||
{file = "tomli-1.2.3.tar.gz", hash = "sha256:05b6166bff487dc068d322585c7ea4ef78deed501cc124060e0f238e89a9231f"},
|
||||
|
|
|
@ -18,6 +18,8 @@ traitlets = "==5.2.0"
|
|||
Cython = "^0.29.30"
|
||||
tabulate = "^0.8.9"
|
||||
statsmodels = "^0.13.5"
|
||||
bayesian-optimization = "^1.4.2"
|
||||
colorama = "^0.4.6"
|
||||
|
||||
[tool.poetry.dev-dependencies]
|
||||
black = "^21.12b0"
|
||||
|
|
|
@ -1,23 +1,124 @@
|
|||
from speed_coupling_scan import *
|
||||
|
||||
import random
|
||||
#powers = np.array([model.power().value for model in models])
|
||||
powers = np.array([random.random() for model in models])
|
||||
normalized_powers = powers - powers.min()
|
||||
normalized_powers /= normalized_powers.max()
|
||||
colors = [Blues(power) for power in normalized_powers]
|
||||
ax1 = plt.gcf().add_subplot(111, projection='3d')
|
||||
taurus_path = "taurus"
|
||||
from hiro_models.model_auxiliary import import_results
|
||||
|
||||
_xx, _yy = np.meshgrid(δs, τ_Is)
|
||||
x, y = _xx.ravel(), _yy.ravel()
|
||||
dx = (δs[1] - δs[0])
|
||||
dy = (τ_Is[1] - τ_Is[0])
|
||||
x -= dx /2
|
||||
y -= dy /2
|
||||
ax1.bar3d(x, y, np.zeros_like(powers), dx, dy, powers, color=colors)
|
||||
ax1.set_xticks(δs)
|
||||
ax1.set_yticks(τ_Is)
|
||||
import_results(
|
||||
other_data_path="./taurus/.data",
|
||||
other_results_path="./taurus/results",
|
||||
interactive=False,
|
||||
models_to_import=models,
|
||||
force=True,
|
||||
)
|
||||
|
||||
ax1.set_xlabel(r"$\delta$")
|
||||
ax1.set_ylabel(r"$\tau_I$")
|
||||
ax1.set_zlabel(r"$P$")
|
||||
f, a = plt.subplots()
|
||||
|
||||
for model in models:
|
||||
Δs = (model.steady_index(observable=model.system_energy()))
|
||||
#Δ = (model.steady_index(observable=model.total_power(), fraction=.7))
|
||||
# for Δ in Δs[2:]:
|
||||
# pu.plot_with_σ(model.t[:model.strobe[1][1]], Δ, ax=a)
|
||||
#plt.plot(Δ)
|
||||
print(Δs)
|
||||
|
||||
try:
|
||||
# pu.plot_with_σ(model.t, model.total_energy_from_power().sum_baths(), ax=a, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
# pu.plot_with_σ(model.t, model.total_energy().sum_baths(), ax=a, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
pu.plot_with_σ(model.t, model.total_energy_from_power(), ax=a, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
pu.plot_with_σ(model.t, model.total_energy(), ax=a, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
print(model.system_energy().N)
|
||||
print(model.system_power().N)
|
||||
print(model.interaction_power().N)
|
||||
except:
|
||||
pass
|
||||
a.legend()
|
||||
|
||||
f, a =ot.plot_3d_heatmap(models, lambda model: -model.power(fraction=.3).value, lambda model: model.δ[0], lambda model: model.timings_L[0][1] - model.timings_L[0][0])
|
||||
a.set_xlabel(r"$\delta$")
|
||||
a.set_ylabel(r"$\tau_I$")
|
||||
a.set_zlabel(r"$P$")
|
||||
|
||||
f, a = plt.subplots()
|
||||
|
||||
for model in models:
|
||||
try:
|
||||
power = model.power(fraction=.5)
|
||||
a.plot(power.Ns, power.values, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
except:
|
||||
pass
|
||||
a.legend()
|
||||
|
||||
from speed_coupling_scan import *
|
||||
|
||||
taurus_path = "taurus"
|
||||
from hiro_models.model_auxiliary import import_results
|
||||
|
||||
import_results(
|
||||
other_data_path="./taurus/.data",
|
||||
other_results_path="./taurus/results",
|
||||
interactive=False,
|
||||
models_to_import=models,
|
||||
# force=True,
|
||||
)
|
||||
|
||||
f, a = plt.subplots()
|
||||
|
||||
for model in models:
|
||||
Δs = (model.steady_index(observable=model.system_energy()))
|
||||
#Δ = (model.steady_index(observable=model.total_power(), fraction=.7))
|
||||
# for Δ in Δs[2:]:
|
||||
# pu.plot_with_σ(model.t[:model.strobe[1][1]], Δ, ax=a)
|
||||
#plt.plot(Δ)
|
||||
print(Δs)
|
||||
|
||||
try:
|
||||
# pu.plot_with_σ(model.t, model.total_energy_from_power().sum_baths(), ax=a, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
# pu.plot_with_σ(model.t, model.total_energy().sum_baths(), ax=a, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
pu.plot_with_σ(model.t, model.total_energy_from_power(), ax=a, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
pu.plot_with_σ(model.t, model.total_energy(), ax=a, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
print(model.system_energy().N)
|
||||
print(model.system_power().N)
|
||||
print(model.interaction_power().N)
|
||||
except:
|
||||
pass
|
||||
a.legend()
|
||||
|
||||
f = plt.figure()
|
||||
a_power = f.add_subplot(121, projection='3d')
|
||||
a_efficiency = f.add_subplot(122, projection='3d')
|
||||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: -model.power(fraction=0.5).value,
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.timings_L[0][1] - model.timings_L[0][0],
|
||||
normalize=True,
|
||||
ax=a_power,
|
||||
)
|
||||
a_power.set_xlabel(r"$\delta$")
|
||||
a_power.set_ylabel(r"$\tau_I$")
|
||||
a_power.set_zlabel(r"$P$ (normalized)")
|
||||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: model.efficiency(fraction=0.5).value,
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.timings_L[0][1] - model.timings_L[0][0],
|
||||
ax=a_efficiency,
|
||||
)
|
||||
a_efficiency.set_xlabel(r"$\delta$")
|
||||
a_efficiency.set_ylabel(r"$\tau_I$")
|
||||
a_efficiency.set_zlabel(r"$\eta$")
|
||||
|
||||
fs.export_fig("coupling_speed_scan", fig=f)
|
||||
f
|
||||
|
||||
f, a = plt.subplots()
|
||||
|
||||
for model in models:
|
||||
try:
|
||||
power = model.power(fraction=.5)
|
||||
a.plot(power.Ns, power.values, label=fr"$\delta={model.δ[0]}$, $\tau_I={model.timings_L[0][1] - model.timings_L[0][0]:.3}$")
|
||||
except:
|
||||
pass
|
||||
a.legend()
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
from speed_coupling_scan import *
|
||||
|
||||
ot.integrate_online_multi(models, 10_000, increment=1000, analyze_kwargs=dict(every=100))
|
||||
|
||||
from speed_coupling_scan import *
|
||||
|
||||
ot.integrate_online_multi(models, 10_000, increment=1000, analyze_kwargs=dict(every=100))
|
||||
|
|
|
@ -75,3 +75,78 @@ for τ_I, δ in itertools.product(τ_Is, δs):
|
|||
|
||||
|
||||
ot.plot_cycles(models[:: len(δs)])
|
||||
|
||||
import figsaver as fs
|
||||
import plot_utils as pu
|
||||
from hiro_models.one_qubit_model import StocProcTolerances
|
||||
from hiro_models.otto_cycle import OttoEngine
|
||||
import hiro_models.model_auxiliary as aux
|
||||
import numpy as np
|
||||
import qutip as qt
|
||||
import utilities as ut
|
||||
import stocproc
|
||||
import matplotlib.pyplot as plt
|
||||
import otto_utilities as ot
|
||||
|
||||
import ray
|
||||
ray.shutdown()
|
||||
|
||||
#ray.init(address='auto')
|
||||
ray.init()
|
||||
from hops.util.logging_setup import logging_setup
|
||||
import logging
|
||||
logging_setup(logging.INFO)
|
||||
plt.rcParams['figure.figsize'] = (12,4)
|
||||
|
||||
def timings(τ_c, τ_i):
|
||||
τ_th = (1 - 2 * τ_c) / 2
|
||||
τ_i_on = (τ_th - 2*τ_i)
|
||||
timings_H = (0, τ_c, τ_c + τ_th, 2*τ_c + τ_th)
|
||||
timings_L_hot = (τ_c, τ_c + τ_i, τ_c + τ_i + τ_i_on, τ_c + 2 * τ_i + τ_i_on)
|
||||
|
||||
timings_L_cold = tuple(time + timings_H[2] for time in timings_L_hot)
|
||||
|
||||
return timings_H, (timings_L_cold, timings_L_hot)
|
||||
|
||||
(p_H, p_L) = timings(0.1, 0.3)
|
||||
prototype = OttoEngine(
|
||||
δ=[0.4, 0.4],
|
||||
ω_c=[2, 2],
|
||||
ψ_0=qt.basis([2], [1]),
|
||||
description=f"A model for scanning coupling strength and interactin switch times.",
|
||||
k_max=4,
|
||||
bcf_terms=[6] * 2,
|
||||
truncation_scheme="simplex",
|
||||
driving_process_tolerances=[StocProcTolerances(1e-3, 1e-3)] * 2,
|
||||
thermal_process_tolerances=[StocProcTolerances(1e-3, 1e-3)] * 2,
|
||||
# driving_process_tolerances=[StocProcTolerances(1e-5, 1e-5)] * 2,
|
||||
# thermal_process_tolerances=[StocProcTolerances(1e-5, 1e-5)] * 2,
|
||||
T=[1, 4],
|
||||
therm_methods=["tanhsinh", "tanhsinh"],
|
||||
Δ=1,
|
||||
num_cycles=5,
|
||||
Θ=1.5 / 0.05,
|
||||
dt=0.01/8,
|
||||
timings_H=p_H,
|
||||
timings_L=p_L,
|
||||
streaming_mode=True,
|
||||
shift_to_resonance=(False, False),
|
||||
)
|
||||
|
||||
δs = np.round(np.linspace(.3, .5, 3), 3)
|
||||
τ_Is = np.array([# .05,
|
||||
.1, .15, .2])
|
||||
δs, τ_Is
|
||||
|
||||
models = []
|
||||
|
||||
import itertools
|
||||
|
||||
for τ_I, δ in itertools.product(τ_Is, δs):
|
||||
(p_H, p_L) = timings(0.1, τ_I)
|
||||
|
||||
model = prototype.copy()
|
||||
model.δ = [δ, δ]
|
||||
model.timings_H = p_H
|
||||
model.timings_L = p_L
|
||||
models.append(model)
|
||||
|
|
|
@ -79,3 +79,86 @@ for overlap, shift in itertools.product(overlaps, shifts):
|
|||
|
||||
|
||||
ot.plot_cycles(models)
|
||||
|
||||
import figsaver as fs
|
||||
import plot_utils as pu
|
||||
from hiro_models.one_qubit_model import StocProcTolerances
|
||||
from hiro_models.otto_cycle import OttoEngine
|
||||
import hiro_models.model_auxiliary as aux
|
||||
import numpy as np
|
||||
import qutip as qt
|
||||
import utilities as ut
|
||||
import stocproc
|
||||
import matplotlib.pyplot as plt
|
||||
import otto_utilities as ot
|
||||
|
||||
import ray
|
||||
ray.shutdown()
|
||||
|
||||
#ray.init(address='auto')
|
||||
ray.init()
|
||||
from hops.util.logging_setup import logging_setup
|
||||
import logging
|
||||
logging_setup(logging.INFO)
|
||||
plt.rcParams['figure.figsize'] = (12,4)
|
||||
|
||||
def timings(τ_c, τ_i, percent_overlap=0):
|
||||
τ_cI = τ_c * (1-percent_overlap)
|
||||
|
||||
τ_thI = (1 - 2 * τ_cI) / 2
|
||||
τ_th = (1 - 2 * τ_c) / 2
|
||||
τ_i_on = (τ_thI - 2*τ_i)
|
||||
timings_H = (0, τ_c, τ_c + τ_th, 2*τ_c + τ_th)
|
||||
|
||||
timings_L_hot = (τ_cI, τ_cI + τ_i, τ_cI + τ_i + τ_i_on, τ_cI + 2 * τ_i + τ_i_on)
|
||||
|
||||
timings_L_cold = tuple(time + timings_H[2] for time in timings_L_hot)
|
||||
|
||||
return timings_H, (timings_L_cold, timings_L_hot)
|
||||
|
||||
τ_mod, τ_I = 0.1, 0.1
|
||||
(p_H, p_L) = timings(τ_mod, τ_I, .5)
|
||||
prototype = OttoEngine(
|
||||
δ=[0.4, 0.4],
|
||||
ω_c=[2, 2],
|
||||
ψ_0=qt.basis([2], [1]),
|
||||
description=f"A model for scanning coupling strength and interactin switch times.",
|
||||
k_max=4,
|
||||
bcf_terms=[6] * 2,
|
||||
truncation_scheme="simplex",
|
||||
driving_process_tolerances=[StocProcTolerances(1e-3, 1e-3)] * 2,
|
||||
thermal_process_tolerances=[StocProcTolerances(1e-3, 1e-3)] * 2,
|
||||
T=[1, 4],
|
||||
therm_methods=["tanhsinh", "tanhsinh"],
|
||||
Δ=1,
|
||||
num_cycles=4,
|
||||
Θ=1.5 / 0.05,
|
||||
dt=0.01/8,
|
||||
timings_H=p_H,
|
||||
timings_L=p_L,
|
||||
streaming_mode=True,
|
||||
shift_to_resonance=(False, False),
|
||||
L_shift=(0.0, 0.0),
|
||||
)
|
||||
ot.plot_cycle(prototype)
|
||||
|
||||
overlaps = np.round(np.linspace(0, 1, 3), 3)
|
||||
shifts = np.round(np.linspace(0, τ_mod, 3), 3)
|
||||
|
||||
models = []
|
||||
|
||||
import itertools
|
||||
|
||||
for overlap, shift in itertools.product(overlaps, shifts):
|
||||
print(overlap, shift)
|
||||
(p_H, p_L) = timings(τ_mod, τ_I, overlap)
|
||||
|
||||
model = prototype.copy()
|
||||
model.timings_H = p_H
|
||||
model.timings_L = p_L
|
||||
model.L_shift = (shift, shift)
|
||||
models.append(model)
|
||||
|
||||
|
||||
ot.plot_cycles(models)
|
||||
fs.export_fig("timing_scan_cycles")
|
||||
|
|
|
@ -1,12 +1,3 @@
|
|||
from timing_scan import *
|
||||
|
||||
ot.integrate_online_multi(models, 10_000, increment=2000, analyze_kwargs=dict(every=100), data_path=".data_timing", results_path="results_timing")
|
||||
|
||||
aux.import_results(
|
||||
data_path="./.data",
|
||||
other_data_path="./.data_timing",
|
||||
results_path="./results",
|
||||
other_results_path="./results_timing",
|
||||
interactive=False,
|
||||
models_to_import=models,
|
||||
)
|
||||
ot.integrate_online_multi(models, 10_000, increment=2000, analyze_kwargs=dict(every=100), data_path=".data_timing", results_path="results_timing")
|
||||
|
|
Loading…
Add table
Reference in a new issue