used steady_idx=-2
Before Width: | Height: | Size: 71 KiB |
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB |
Before Width: | Height: | Size: 45 KiB After Width: | Height: | Size: 45 KiB |
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB |
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB |
Before Width: | Height: | Size: 46 KiB After Width: | Height: | Size: 46 KiB |
After Width: | Height: | Size: 80 KiB |
|
@ -33,6 +33,7 @@ We take the same baseline as in [[id:c06111fd-d719-433d-a316-c163f6e1d384][cycle
|
|||
|
||||
But we vary the cycle speed while keeping a fixed proportion
|
||||
coupling-change/cycle time.
|
||||
|
||||
#+NAME: make-model
|
||||
#+begin_src jupyter-python :results none
|
||||
def make_model(Θ, δ):
|
||||
|
@ -125,7 +126,7 @@ coupling-change/cycle time.
|
|||
|
||||
|
||||
#+begin_src jupyter-python
|
||||
#[model.efficiency(steady_idx=2).value * 100 for model in models][10]
|
||||
#[model.efficiency(steady_idx=-2).value * 100 for model in models][10]
|
||||
models[10].strobe, models[1].strobe
|
||||
#+end_src
|
||||
|
||||
|
@ -174,7 +175,7 @@ coupling-change/cycle time.
|
|||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.clip(
|
||||
np.nan_to_num(model.efficiency(steady_idx=2).value * 100), 0, np.inf
|
||||
np.nan_to_num(model.efficiency(steady_idx=-2).value * 100), 0, np.inf
|
||||
),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
|
@ -184,7 +185,7 @@ coupling-change/cycle time.
|
|||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.clip(-model.power(steady_idx=2).value * 1000, 0, np.inf),
|
||||
lambda model: np.clip(-model.power(steady_idx=-2).value * 1000, 0, np.inf),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
ax=a_power,
|
||||
|
@ -229,7 +230,7 @@ coupling-change/cycle time.
|
|||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.clip(-model.power(steady_idx=2).value * model.Θ, 0, np.inf),
|
||||
lambda model: np.clip(-model.power(steady_idx=-2).value * model.Θ, 0, np.inf),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
ax=a_work,
|
||||
|
@ -255,14 +256,15 @@ coupling-change/cycle time.
|
|||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
[[file:./.ob-jupyter/7a3d06e0b864e218f488d870a018e449c8747efb.svg]]
|
||||
[[file:./.ob-jupyter/f55c402ea2f7ec919999aaeb24cd4e68e0cf7a26.svg]]
|
||||
[[file:./.ob-jupyter/5e0a5eff11cca2fe9fd9cd72453217c63a3e67c6.svg]]
|
||||
[[file:./.ob-jupyter/93b23c8dfaf36e510fde11ec619dab38b963a8d2.svg]]
|
||||
[[file:./.ob-jupyter/29dbaee13f9c519b0e982f8f1537345e0bc9346f.svg]]
|
||||
[[file:./.ob-jupyter/b0aa1cfccf4cd1d8ce6ef7d54830ca8f3c178da3.svg]]
|
||||
[[file:./.ob-jupyter/e4cc58ca4c704d14df7e2b38948acb0c9e47cbab.svg]]
|
||||
[[file:./.ob-jupyter/839baa7aa85839f3073dd6eb4e11584aa4f5e972.svg]]
|
||||
[[file:./.ob-jupyter/c6fa9c1a1b2fdf210a09e58f32ceb43ddfcb3791.svg]]
|
||||
[[file:./.ob-jupyter/7cd116167e67e1ecaa314c3df0e69df8d5e607be.svg]]
|
||||
:END:
|
||||
|
||||
|
||||
|
||||
#+begin_src jupyter-python
|
||||
f = plt.figure()
|
||||
a_power = f.add_subplot(121, projection="3d")
|
||||
|
@ -274,7 +276,7 @@ coupling-change/cycle time.
|
|||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.divide(np.abs(model.power(steady_idx=2).σ), np.abs(model.power(steady_idx=2).value)),
|
||||
lambda model: np.divide(np.abs(model.power(steady_idx=-2).σ), np.abs(model.power(steady_idx=-2).value)),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
ax=a_power,
|
||||
|
@ -284,7 +286,7 @@ coupling-change/cycle time.
|
|||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.divide(np.clip(np.nan_to_num(model.efficiency(steady_idx=2).σ * 100), 0, np.inf), np.abs(model.efficiency(steady_idx=2).value * 100)),
|
||||
lambda model: np.divide(np.clip(np.nan_to_num(model.efficiency(steady_idx=-2).σ * 100), 0, np.inf), np.abs(model.efficiency(steady_idx=-2).value * 100)),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
ax=a_efficiency,
|
||||
|
@ -294,7 +296,8 @@ coupling-change/cycle time.
|
|||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:./.ob-jupyter/6af04b1a6b4f02304a7d09976d499185668970b9.svg]]
|
||||
[[file:./.ob-jupyter/f7ad9a0e9f9caefc557f1690582b5aa6abe22a01.svg]]
|
||||
|
||||
|
||||
|
||||
* Weak Coupling Limit
|
||||
|
|
|
@ -66,7 +66,7 @@ for i in range(len(Θs)):
|
|||
for model in models:
|
||||
plt.plot(model.t, abs(model.total_energy_from_power().value - model.total_energy().value))
|
||||
|
||||
#[model.efficiency(steady_idx=2).value * 100 for model in models][10]
|
||||
#[model.efficiency(steady_idx=-2).value * 100 for model in models][10]
|
||||
models[10].strobe, models[1].strobe
|
||||
|
||||
models[10].system_energy().N
|
||||
|
@ -95,7 +95,7 @@ for ax in [a_power, a_efficiency, a_work, a_mean_inter_power, a_mean_system_powe
|
|||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.clip(
|
||||
np.nan_to_num(model.efficiency(steady_idx=2).value * 100), 0, np.inf
|
||||
np.nan_to_num(model.efficiency(steady_idx=-2).value * 100), 0, np.inf
|
||||
),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
|
@ -105,7 +105,7 @@ a_efficiency.set_zlabel(r"$\eta$")
|
|||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.clip(-model.power(steady_idx=2).value * 1000, 0, np.inf),
|
||||
lambda model: np.clip(-model.power(steady_idx=-2).value * 1000, 0, np.inf),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
ax=a_power,
|
||||
|
@ -150,7 +150,7 @@ a_mean_system_power.zaxis.labelpad = 8
|
|||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.clip(-model.power(steady_idx=2).value * model.Θ, 0, np.inf),
|
||||
lambda model: np.clip(-model.power(steady_idx=-2).value * model.Θ, 0, np.inf),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
ax=a_work,
|
||||
|
@ -183,7 +183,7 @@ for ax in [a_power, a_efficiency]:
|
|||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.divide(np.abs(model.power(steady_idx=2).σ), np.abs(model.power(steady_idx=2).value)),
|
||||
lambda model: np.divide(np.abs(model.power(steady_idx=-2).σ), np.abs(model.power(steady_idx=-2).value)),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
ax=a_power,
|
||||
|
@ -193,7 +193,7 @@ a_power.set_zlabel(r"$\sigma_P/|P|$")
|
|||
|
||||
ot.plot_3d_heatmap(
|
||||
models,
|
||||
lambda model: np.divide(np.clip(np.nan_to_num(model.efficiency(steady_idx=2).σ * 100), 0, np.inf), np.abs(model.efficiency(steady_idx=2).value * 100)),
|
||||
lambda model: np.divide(np.clip(np.nan_to_num(model.efficiency(steady_idx=-2).σ * 100), 0, np.inf), np.abs(model.efficiency(steady_idx=-2).value * 100)),
|
||||
lambda model: model.δ[0],
|
||||
lambda model: model.Θ,
|
||||
ax=a_efficiency,
|
||||
|
|
Before Width: | Height: | Size: 2.8 MiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 2.2 MiB |
Before Width: | Height: | Size: 2.1 MiB |
Before Width: | Height: | Size: 3.8 MiB |
Before Width: | Height: | Size: 43 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 265 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 2.1 MiB |
Before Width: | Height: | Size: 39 KiB |
Before Width: | Height: | Size: 88 KiB |
Before Width: | Height: | Size: 39 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 39 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 43 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 42 KiB |