used steady_idx=-2

This commit is contained in:
valentin.boettcher@mailbox.tu-dresden.de 2023-07-25 12:14:48 -04:00
parent e7bd81c059
commit 7912e8c88c
No known key found for this signature in database
GPG key ID: E034E12B7AF56ACE
55 changed files with 3992 additions and 614439 deletions

File diff suppressed because it is too large Load diff

Before

Width:  |  Height:  |  Size: 71 KiB

File diff suppressed because it is too large Load diff

After

Width:  |  Height:  |  Size: 80 KiB

View file

@ -33,6 +33,7 @@ We take the same baseline as in [[id:c06111fd-d719-433d-a316-c163f6e1d384][cycle
But we vary the cycle speed while keeping a fixed proportion
coupling-change/cycle time.
#+NAME: make-model
#+begin_src jupyter-python :results none
def make_model(Θ, δ):
@ -125,7 +126,7 @@ coupling-change/cycle time.
#+begin_src jupyter-python
#[model.efficiency(steady_idx=2).value * 100 for model in models][10]
#[model.efficiency(steady_idx=-2).value * 100 for model in models][10]
models[10].strobe, models[1].strobe
#+end_src
@ -174,7 +175,7 @@ coupling-change/cycle time.
ot.plot_3d_heatmap(
models,
lambda model: np.clip(
np.nan_to_num(model.efficiency(steady_idx=2).value * 100), 0, np.inf
np.nan_to_num(model.efficiency(steady_idx=-2).value * 100), 0, np.inf
),
lambda model: model.δ[0],
lambda model: model.Θ,
@ -184,7 +185,7 @@ coupling-change/cycle time.
ot.plot_3d_heatmap(
models,
lambda model: np.clip(-model.power(steady_idx=2).value * 1000, 0, np.inf),
lambda model: np.clip(-model.power(steady_idx=-2).value * 1000, 0, np.inf),
lambda model: model.δ[0],
lambda model: model.Θ,
ax=a_power,
@ -229,7 +230,7 @@ coupling-change/cycle time.
ot.plot_3d_heatmap(
models,
lambda model: np.clip(-model.power(steady_idx=2).value * model.Θ, 0, np.inf),
lambda model: np.clip(-model.power(steady_idx=-2).value * model.Θ, 0, np.inf),
lambda model: model.δ[0],
lambda model: model.Θ,
ax=a_work,
@ -255,14 +256,15 @@ coupling-change/cycle time.
#+RESULTS:
:RESULTS:
[[file:./.ob-jupyter/7a3d06e0b864e218f488d870a018e449c8747efb.svg]]
[[file:./.ob-jupyter/f55c402ea2f7ec919999aaeb24cd4e68e0cf7a26.svg]]
[[file:./.ob-jupyter/5e0a5eff11cca2fe9fd9cd72453217c63a3e67c6.svg]]
[[file:./.ob-jupyter/93b23c8dfaf36e510fde11ec619dab38b963a8d2.svg]]
[[file:./.ob-jupyter/29dbaee13f9c519b0e982f8f1537345e0bc9346f.svg]]
[[file:./.ob-jupyter/b0aa1cfccf4cd1d8ce6ef7d54830ca8f3c178da3.svg]]
[[file:./.ob-jupyter/e4cc58ca4c704d14df7e2b38948acb0c9e47cbab.svg]]
[[file:./.ob-jupyter/839baa7aa85839f3073dd6eb4e11584aa4f5e972.svg]]
[[file:./.ob-jupyter/c6fa9c1a1b2fdf210a09e58f32ceb43ddfcb3791.svg]]
[[file:./.ob-jupyter/7cd116167e67e1ecaa314c3df0e69df8d5e607be.svg]]
:END:
#+begin_src jupyter-python
f = plt.figure()
a_power = f.add_subplot(121, projection="3d")
@ -274,7 +276,7 @@ coupling-change/cycle time.
ot.plot_3d_heatmap(
models,
lambda model: np.divide(np.abs(model.power(steady_idx=2).σ), np.abs(model.power(steady_idx=2).value)),
lambda model: np.divide(np.abs(model.power(steady_idx=-2).σ), np.abs(model.power(steady_idx=-2).value)),
lambda model: model.δ[0],
lambda model: model.Θ,
ax=a_power,
@ -284,7 +286,7 @@ coupling-change/cycle time.
ot.plot_3d_heatmap(
models,
lambda model: np.divide(np.clip(np.nan_to_num(model.efficiency(steady_idx=2).σ * 100), 0, np.inf), np.abs(model.efficiency(steady_idx=2).value * 100)),
lambda model: np.divide(np.clip(np.nan_to_num(model.efficiency(steady_idx=-2).σ * 100), 0, np.inf), np.abs(model.efficiency(steady_idx=-2).value * 100)),
lambda model: model.δ[0],
lambda model: model.Θ,
ax=a_efficiency,
@ -294,7 +296,8 @@ coupling-change/cycle time.
#+end_src
#+RESULTS:
[[file:./.ob-jupyter/6af04b1a6b4f02304a7d09976d499185668970b9.svg]]
[[file:./.ob-jupyter/f7ad9a0e9f9caefc557f1690582b5aa6abe22a01.svg]]
* Weak Coupling Limit

View file

@ -66,7 +66,7 @@ for i in range(len(Θs)):
for model in models:
plt.plot(model.t, abs(model.total_energy_from_power().value - model.total_energy().value))
#[model.efficiency(steady_idx=2).value * 100 for model in models][10]
#[model.efficiency(steady_idx=-2).value * 100 for model in models][10]
models[10].strobe, models[1].strobe
models[10].system_energy().N
@ -95,7 +95,7 @@ for ax in [a_power, a_efficiency, a_work, a_mean_inter_power, a_mean_system_powe
ot.plot_3d_heatmap(
models,
lambda model: np.clip(
np.nan_to_num(model.efficiency(steady_idx=2).value * 100), 0, np.inf
np.nan_to_num(model.efficiency(steady_idx=-2).value * 100), 0, np.inf
),
lambda model: model.δ[0],
lambda model: model.Θ,
@ -105,7 +105,7 @@ a_efficiency.set_zlabel(r"$\eta$")
ot.plot_3d_heatmap(
models,
lambda model: np.clip(-model.power(steady_idx=2).value * 1000, 0, np.inf),
lambda model: np.clip(-model.power(steady_idx=-2).value * 1000, 0, np.inf),
lambda model: model.δ[0],
lambda model: model.Θ,
ax=a_power,
@ -150,7 +150,7 @@ a_mean_system_power.zaxis.labelpad = 8
ot.plot_3d_heatmap(
models,
lambda model: np.clip(-model.power(steady_idx=2).value * model.Θ, 0, np.inf),
lambda model: np.clip(-model.power(steady_idx=-2).value * model.Θ, 0, np.inf),
lambda model: model.δ[0],
lambda model: model.Θ,
ax=a_work,
@ -183,7 +183,7 @@ for ax in [a_power, a_efficiency]:
ot.plot_3d_heatmap(
models,
lambda model: np.divide(np.abs(model.power(steady_idx=2).σ), np.abs(model.power(steady_idx=2).value)),
lambda model: np.divide(np.abs(model.power(steady_idx=-2).σ), np.abs(model.power(steady_idx=-2).value)),
lambda model: model.δ[0],
lambda model: model.Θ,
ax=a_power,
@ -193,7 +193,7 @@ a_power.set_zlabel(r"$\sigma_P/|P|$")
ot.plot_3d_heatmap(
models,
lambda model: np.divide(np.clip(np.nan_to_num(model.efficiency(steady_idx=2).σ * 100), 0, np.inf), np.abs(model.efficiency(steady_idx=2).value * 100)),
lambda model: np.divide(np.clip(np.nan_to_num(model.efficiency(steady_idx=-2).σ * 100), 0, np.inf), np.abs(model.efficiency(steady_idx=-2).value * 100)),
lambda model: model.δ[0],
lambda model: model.Θ,
ax=a_efficiency,